3,137 research outputs found
Ward's solitions
Using the `Riemann Problem with zeros' method, Ward has constructed exact
solutions to a (2+1)-dimensional integrable Chiral Model, which exhibit
solitons with nontrivial scattering. We give a correspondence between what we
conjecture to be all pure soliton solutions and certain holomorphic vector
bundles on a compact surface.Comment: 12 pages. Published copy, also available at
http://www.maths.warwick.ac.uk/gt/GTVol1/paper2.abs.htm
Recommended from our members
Statistical Process Control for The Engineering IT Support Incident Life Cycle
This paper describes a new Statistical Process Control technique to better manage the engineering Information Technology life cycle process. This includes the identification of the activities in the engineering IT support lifecycle initiation, reproduction, analysis and resolution phases. The performance of these lifecycle activities are analyzed using a highly modified Chart of Individuals, Statistical Process Control approach. This new type of SPC system can help engineering IT management to determine whether or not a support incident is in control. Out of control support incidents can then be investigated for special causes so that corrective action may be taken
Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection
Enteropathogenic and enterohemorrhagic bacterial infections in humans are a severe cause of morbidity and mortality. Although NOD-like receptors (NLRs) NOD2 and NLRP3 have important roles in the generation of protective immune responses to enteric pathogens, whether there is crosstalk among NLRs to regulate immune signaling is not known. Here, we show that mice and macrophages deficient in NOD2, or the downstream adaptor RIP2, have enhanced NLRP3-and caspases-11-dependent non-canonical inflammasome activation in a mouse model of enteropathogenic Citrobacter rodentium infection. Mechanistically, NOD2 and RIP2 regulate reactive oxygen species (ROS) production. Increased ROS in Rip2-deficient macrophages subsequently enhances c-Jun N-terminal kinase (JNK) signaling resulting in increased caspase-11 expression and activation, and more non-canonical NLRP3-dependant inflammasome activation. Intriguingly, this leads to protection of the colon epithelium for up to 10 days in Rip2-deficient mice infected with C. rodentium. Our findings designate NOD2 and RIP2 as key regulators of cellular ROS homeostasis and demonstrate for the first time that ROS regulates caspase-11 expression and non-canonical NLRP3 inflammasome activation through the JNK pathway
Cognitive constraints, contraction consistency, and the satisficing criterion
© 2007, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0
Ground-Based Coronagraphy with High Order Adaptive Optics
We summarize the theory of coronagraphic optics, and identify a dimensionless
fine-tuning parameter, F, which we use to describe the Lyot stop size in the
natural units of the coronagraphic optical train and the observing wavelength.
We then present simulations of coronagraphs matched to adaptive optics (AO)
systems on the Calypso 1.2m, Palomar Hale 5m and Gemini 8m telescopes under
various atmospheric conditions, and identify useful parameter ranges for AO
coronagraphy on these telescopes. Our simulations employ a tapered, high-pass
filter in spatial frequency space to mimic the action of adaptive wavefront
correction. We test the validity of this representation of AO correction by
comparing our simulations with recent K-band data from the 241-channel Palomar
Hale AO system and its dedicated PHARO science camera in coronagraphic mode.Comment: To appear in ApJ, May 2001 (28 pages, 10 figs
Ground-based coronagraphy with high-order adaptive optics
We simulate the actions of a coronagraph matched to diffraction-limited adaptive optics (AO) systems on the Calypso 1.2 m, Palomar Hale 5 m and Gemini 8.1 m telescopes, and identify useful parameter ranges for AO coronagraphy on these systems. We model the action of adaptive wavefront correction with a tapered, high-pass filter in spatial frequency rather than a hard low frequency cutoff, and estimate the minimum number of AO channels required to produce sufficient image quality for coronagraphic suppression within a few diffraction widths of a central bright object (as is relevant to e.g., brown dwarf searches near late-type dwarf stars). We explore the effect of varying the occulting image- plane stop size and shape, and examine the trade-off between throughput and suppression of the image halo and Airy rings. We discuss our simulations in the context of results from the 241-channel Palomar Hale AO coronagraph system, and suggest approaches for future AO coronagraphic instruments on large telescopes
- …
