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Abstract

A theory of decision making is proposed that offers an axiomatic basis for the notion of “satisfic-
ing” postulated by Herbert Simon. The theory relaxes the standard assumption that the decision
maker always fully perceives his preferences among the available alternatives, requiring instead
that his ability to perceive any given preference be decreasing with respect to the complexity of
the choice problem at hand. When complexity is aligned with set inclusion, this exercise is shown
to be equivalent to abandoning the contraction consistency axiom of classical choice theory.

JEL classification: D01; D11; D80
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1. Introduction

Now more than fifty years ago, Herbert Simon published the first [24] of several early
articles challenging the models of decision making then dominant in economic analysis.
“[T]he task,” he wrote [p. 99],

is to replace the global rationality of economic man with a kind of rational behavior
that is compatible with the access to information and the computational capacities
that are actually possessed by organisms, including man, in the kinds of environments
in which such organisms exist.

As an example of such compatible behavior Simon proposed the concept of “satisficing,”1

which he proceeded to define [25, v. 3, p. 295] as “choos[ing] an alternative that meets or
exceeds specified criteria, but that is not guaranteed to be either unique or in any sense the
best.” This proposal can be implemented by replacing the standard maximizing criterion
f(x) ≥ max f [A] for an alternative x to be selectable from a menu A with the satisficing
criterion f(x) ≥ θ(A), where the functions f and θ return, respectively, utility values
and thresholds for acceptability. And it then follows that satisficing behavior includes

1Simon [25, v. 2, p. 415] identifies this word as Scottish in origin, while the Oxford English Dictionary
finds its earliest recorded use in the Swiss theologian Henry Bullinger’s [7] comment (presumably about the
Romans) “[t]hat their founders were nourished by suckyng of a wolfe: so haue all that people wolues mindes,
neuer satisfised with bloud, euer greedy of dominion and hungryng after riches. . . .”
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wxyz 7→ xyz
xRw & yRw & zRw

θ(wxyz) = 1
wxy 7→ xy

xRw & yRw
θ(wxy) = 1

wxz 7→ z
xRw & zRw & zRx

θ(wxz) = 3

wyz 7→ yz
yRw & zRw
θ(wyz) = 2

xyz 7→ z
zRx & zRy
θ(xyz) = 3

wx 7→ x
xRw

θ(wx) = 1

wy 7→ y
yRw

θ(wy) = 2

wz 7→ z
zRw

θ(wz) = 3

xy 7→ xy
—

θ(xy) = 1

xz 7→ z
zRx

θ(xz) = 3

yz 7→ z
zRy

θ(yz) = 3

w 7→ w
—

θ(w) = 0 = f(w)

x 7→ x
—

θ(x) = 1 = f(x)

y 7→ y
—

θ(y) = 2 = f(y)

z 7→ z
—

θ(z) = 3 = f(z)

Figure 1: An illustrative example. A choice problem is a nonempty subset of X = wxyz;
the binary relation R indicates strict preference; the function f assigns utility values to
alternatives; and the function θ assigns utility thresholds to menus. Within the cells are
displayed the mapping from menus to subsets of acceptable alternatives (e.g., wxy 7→ xy),
the preferences perceived in the corresponding choice problems (e.g., xRw and yRw in
problem wxy), and the relevant thresholds (e.g., θ(wxy) = 1).

maximizing behavior as a special case, so that any axiomatic basis for the former must be
logically weaker than the classical axiomatizations of the latter.

This paper will suggest a rationale for satisficing behavior based on two themes of Simon’s
work: cognitive constraints and environmental complexity. Specifically, we shall consider the
possibility that a decision maker’s cognitive limitations may to some degree prevent him from
perceiving his own preferences among the available alternatives, and shall assume that the
magnitude of this effect is increasing with respect to the complexity of the choice problem
at hand. The further assumption that complexity is aligned with set inclusion will then lead
to our “nestedness” hypothesis that any (strict) preference perceived in a given problem B
is also perceived in each simpler problem A ⊂ B in which it is relevant. And our principal
finding will be that formalizing Herbert Simon’s critique in this way leads us to abandon
the contraction consistency axiom of classical choice theory (which requires any alternative
both acceptable in B and available in A ⊂ B also to be acceptable in A).

The main features of our theory are illustrated by the example depicted in Figure 1, in
which one cell is assigned to each choice problem drawn from the universal set X = wxyz.
(Note the multiplicative notation for enumerated sets.) Here the top entry in each cell
shows the subset of acceptable alternatives associated with the problem in question; e.g.,
any element of xy is acceptable when the menu is wxy. The middle entry lists the (strict)
preferences that are perceived in the corresponding situation and with respect to which
the acceptable alternatives are maximal; e.g., the perceived preference zRx causes x to
be unacceptable in problem wxz. And the bottom entry supplies the applicable utility
threshold for acceptability; e.g., the acceptable alternatives on the menu wyz are those with
utility values no smaller than θ(wyz) = 2. Moreover, the pattern of perceived preferences
displayed in this example is nested; e.g., the preference zRx is perceived in the problem
xyz ⊃ xz and hence also in the problem xz. And finally, the decision maker’s behavior
violates contraction consistency; e.g., alternative x is deemed acceptable in problem wxyz
but not in problem wxz ⊂ wxyz.
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The purpose of this paper is to establish certain formal relationships among the three
different types of constructs that appear in Figure 1. In Section 2, we demonstrate that
choice behavior is governed by a nested system of perceived preferences with the standard
(weak) ordering properties if and only if it satisfies an axiom of expansion consistency, thus
relating cognitive constraints to failures of contraction consistency. In Section 3, we then
show that this same expansion consistency condition can be used to axiomatize a special
case of the satisficing criterion introduced above. Section 4 establishes that the link between
cognitive constraints and failures of contraction consistency is independent of the ordering
properties needed for the satisficing result. And the concluding Section 5 discusses related
work as well as some conceptual issues raised by our investigations.

Appendices A–B contain essential material that will be of interest primarily to specialists.
Appendix C provides selected proofs.

2. Choice, preference, and cognition

2.1. Preliminaries

Given a nonempty set X, the set of all menus drawn from X is A = {A ⊂ X : A 6= ∅}.
Any particular A ∈ A then represents a slate of mutually-exclusive alternatives, while X
amounts to a full catalog of the options potentially available. A choice function on X is
a mapping C : A → A with the property that ∀A we have C(A) ⊂ A.2 Its value C(A)
at A is referred to as the choice set associated with this menu, and can be interpreted as
the collection of alternatives whose selection from A cannot be ruled out on the basis of
whatever assumptions have been made about the process of decision making.

A binary relation R on X is a subset of X×X, though we ordinarily abbreviate 〈x, y〉 ∈ R
as xRy. Such a relation is said to be a partial order when it is both acyclic (x1Rx2R · · ·Rxn

only if x1 6= xn) and transitive (xRyRz only if xRz); a weak order when it is a negatively
transitive (xRz only if either xRy or yRz) partial order; and a linear order when it is a
weakly connected (x 6= y only if either xRy or yRx) weak order.

A relation R is said to generate a choice function C when each choice set contains those
and only those available alternatives that are maximal with respect to R; i.e., when ∀A we
have C(A) = {x ∈ A : ∀y ∈ A we have ¬[yRx]}.

2.2. Existence versus perceivability of preferences

Neoclassical economic theory rests on the assumption that the choice function encod-
ing the behavior of each autonomous agent is generated by a preference relation with the
properties of a weak order. Moreover, Samuelson [19] and Arrow [4] have shown that the
observable implications of this assumption are captured in a condition generally known as
the Weak Axiom of Revealed Preference.

Condition 1 (Weak Axiom) ∀x, y ∈ A ∩B such that both x ∈ C(A) and y ∈ C(B), we
have x ∈ C(B).

Theorem 1 (Arrow) A choice function is generated by a weak order if and only if it
satisfies the Weak Axiom.

2Note that the domain of C includes each set of alternatives that could conceivably be assembled.
This requirement that choice functions be “fully extended” is discussed at length by Arrow [4, p. 122],
Herzberger [14, p. 192], and Sen [21, p. 245 ff.].
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Our interest at present lies in relaxing the assumption of preference-maximal choice so
as to allow cognitive constraints and environmental complexity to influence behavior. To
this end, let us consider a decision maker who possesses a (strict) preference relation R of
the usual sort, but who cannot be relied upon to perceive any particular preference xRy in
each choice problem A ⊃ xy in which it is relevant. In this case, asserting the existence
of the preference in question no longer allows us to conclude — as in the standard case —
that y will never be chosen when x is available. Indeed, such a conclusion now requires
the additional hypothesis that the reason for rejecting y (namely, the superiority of x) is
perceived.

But if the perceivability as well as the fact of preferences is to be debated, we can certainly
devise a notation for encoding the former in the same way that the relation R encodes the
latter. Given A, let us write RA ⊂ R ∩ [A × A] for the relation containing the preferences
that our agent perceives when faced with this menu. Allowing the choice problem to vary,
we proceed to collect the associated perceived preference relations in a vector R = 〈RA〉A∈A
to be called the decision maker’s preference system. This object will then be said to generate
the choice function C when ∀A we have C(A) = {x ∈ A : ∀y ∈ A we have ¬[yRAx]}.

We shall refer to an arbitrary vector of relations on the sets in A as a relation system.
Such a vector will be said to exhibit a property normally ascribed to individual relations
(e.g., acyclicity) when each of its components exhibits the property. And similarly, a relation
system whose components each belong to a particular class will be designated as in the
phrase “a system of partial orders.”

2.3. The requirement of nestedness

As the reader will no doubt have observed, every choice function is generated by a rela-
tion system and thus the assumption that behavior results from maximization of perceived
preferences excludes no logical possibilities. There is, however, a quite natural — though by
no means indisputable — restriction on preference systems that does constrain the choice
functions they generate; one we shall refer to as the requirement of nestedness. To introduce
this requirement, let us imagine that when confronted with a particular menu B ⊃ xy our
decision maker perceives the preference xRy. When facing a different menu A ⊃ xy that
is in some sense “no more complex” than B, we might then reasonably expect the decision
maker again to perceive xRy on the grounds that only an increase in the complexity of the
environment could have rendered it imperceptible. And although in the present abstract
setting it is unclear how the complexity of a given choice problem is to be measured, we
can treat the set inclusion relation as an indicator of relative complexity under the modest
assumption that adding new alternatives to a problem cannot make it any simpler.

Definition 1 (nestedness) A relation system R is said to be nested if ∀x, y ∈ A ⊂ B we
have xRBy only if xRAy.3

One way to understand the content of the nestedness requirement is to try to imagine
circumstances in which it might be violated.

1. Suppose that a convicted criminal can be executed either by hanging (x) or by electro-
cution (y), or can receive a Presidential pardon (z). If the convict is allowed to choose
his own fate, he may well view the larger choice problem xyz as simpler — in the sense

3A precursor to this property appears in Anand [2, p. 339].
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that it is easier to reach a decision — than the smaller problem xy. But while this
scenario (envisioned by Yossi Feinberg) would then appear to violate the principle that
complexity is aligned with set inclusion, it is in fact fully compatible with nestedness.
Here adding the option of a pardon does not make it any easier to decide between the
two modes of execution, it merely makes this comparison irrelevant.

2. In Sen’s [23, p. 753] thought experiment, a casual acquaintance will gladly accept
rather than decline an invitation to stay for a cup of tea. When offered either tea
or heroin, however, he is thought likely neither to take a refreshment nor to stay for
further pleasantries. The failure of nestedness in this example is clear and uncontro-
versial. And as observed by Sen, the aberrant behavior here can be attributed to the
“epistemic importance” of the heroin alternative, which merely by appearing on the
menu can change the decision maker’s enthusiasm for tea in relation to a speedy exit.

3. Simonson and Tversky [26] investigate “extremeness aversion”; a preference for, e.g.,
medium-priced, medium-quality apples over apples whose price and quality are both
simultaneously either high or low. In the same article, these authors also study “asym-
metric dominance”; a preference for, e.g., good oranges over good bananas when bad
oranges are available, and for good bananas over good oranges when bad bananas are
available. Since neither the ordinal positions of alternatives in a ranking (on the one
hand) nor preferences between good products induced by the presence of bad products
(on the other) are stable under the addition or deletion of options from the menu, it
is apparent that both of these phenomena can lead to violations of nestedness.4

The above examples are intended to clarify the nature of the nestedness hypothesis by
suggesting arguments that might call this property into question. As we have seen, while
the convict scenario describes behavior that is entirely consistent with the restriction, the
behaviors imagined by Sen and observed by Simonson and Tversky are not. Moreover, the
crucial question to be answered with respect to each of these putative counterexamples is the
same: Can the addition of one alternative (such as, resp., a Presidential pardon, heroin, or
bad bananas) cause the perception of a hitherto unperceived preference between two other
alternatives (such as, resp., hanging and electrocution, tea and departure, or good oranges
and good bananas). No violation of nestedness has yet been proposed that cannot be traced
to this sort of causation. And thus it seems appropriate to conclude that our theory is best
suited for situations in which alternatives are evaluated in a pairwise manner — though
with a limited budget of cognitive resources available for making binary comparisons — and
less well suited for situations in which menus are handled more holistically.5

2.4. Expansion and contraction consistency

Having defined and critically (if briefly) evaluated the nestedness hypothesis, let us now
proceed to examine its consequences for choice behavior. To this end, suppose that C is
generated not by a single weak order R, as in Theorem 1, but rather by a nested system R
of weak orders. Given x, y ∈ A∩B such that both x ∈ C(A) and y ∈ C(B), suppose further
that x /∈ C(B), in violation of the Weak Axiom. In this case there must exist a z ∈ B

4Gaertner and Xu [13] characterize choice of the median alternative, while Baigent and Gaertner [5]
carry out a related exercise.

5Obviously, the same is true of theories based on the Weak Axiom, since any such theory involves a tacit
assumption of nestedness (plus an assumption that cognitive resources are effectively unlimited).
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such that both zRBx and ¬[zRBy], and it then follows that yRBx (since R is negatively
transitive). But this rules out any possibility that A ⊂ B, as such an inclusion would imply
that yRAx (since R is nested), contradicting x ∈ C(A).

The above reasoning establishes that when our decision maker’s perceived preferences
are assumed to be both nested and negatively transitive, violations of the Weak Axiom of a
particular sort (namely, those for which A ⊂ B) can be excluded. Precisely this restriction
on the choice function has previously appeared, in the context of social choice theory, in the
work of Bordes [6, p. 452] and of Sen [22, p. 66].

Condition 2 (Strong Expansion) ∀x, y ∈ A ⊂ B such that both x ∈ C(A) and y ∈
C(B), we have x ∈ C(B).

On the other hand, those violations of the Weak Axiom that cannot be ruled out are
captured in the following condition generally credited to Chernoff [8, p. 429], but which also
appears in Nash [18, p. 159].

Condition 3 (Contraction) ∀x ∈ A ⊂ B such that x ∈ C(B) we have x ∈ C(A).

Proposition 1 (Bordes, Sen) Contraction and Strong Expansion together are logically
equivalent to the Weak Axiom.

In Appendix A it is demonstrated that Strong Expansion is not only necessary for the
choice function to be generated by a nested system of weak orders, this condition is also
sufficient. That is to say, given any configuration of choice sets satisfying the condition, we
can find a “revealed preference system” with the desired nestedness and ordering properties
that could have been responsible for the decision maker’s behavior. Together with Propo-
sition 1, this fact enables us to present both the classical characterization theorem and our
modification thereto in a way that accentuates their similarities.

Theorem 2 [A] A choice function is generated by a weak order if and only if it satisfies
Contraction and Strong Expansion. [B] A choice function is generated by a nested system
of weak orders if and only if it satisfies Strong Expansion.

And it is then apparent that permitting a classical decision maker to violate Contraction
amounts to replacing the assumption of full perception with that of nestedness, while at the
same time transferring the standard (weak) ordering properties from the preference relation
to the preference system.

The following example illustrates the possibility of a choice function being generated
by a nested system of weak orders but not by a single weak order; i.e., the “logical gap”
between Theorems 2B and 1/2A.

Example 1 The choice function taking wx 7→ x, wy 7→ y, wz 7→ z, xy 7→ x, xz 7→ z,
yz 7→ y, wxy 7→ xy, wxz 7→ xz, wyz 7→ yz, xyz 7→ xyz, and wxyz 7→ xyz is gen-
erated by the nested system R of weak orders containing the binary comparisons xRwxw,
yRwyw, zRwzw, xRxyy, zRxzx, yRyzz, xRwxyw, yRwxyw, xRwxzw, zRwxzw, yRwyzw, zRwyzw,
xRwxyzw, yRwxyzw, and zRwxyzw. Moreover, this function satisfies Strong Expansion and
violates Contraction.
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2.5. Foundations and the base relation

While Theorem 2B succeeds in characterizing choice behavior governed by a preference
system R exhibiting both nestedness and the standard ordering properties, this result places
few restrictions on the relation R from which perceived preferences are drawn.6 Indeed, the
choice function in Example 1 satisfies Strong Expansion despite implying the preference
cycle xRyRzRx (via the perceived preference cycle xRxyyRyzzRxzx). Yet we may wish to
insist that our agent’s preferences themselves satisfy one or more consistency criteria quite
apart from any question of cognition, since assumptions about his powers of perception (i.e.,
about R) are logically distinct from assumptions about the objects of this perception (i.e.,
about R). And in fact a prohibition on preference cycles of the sort seen in Example 1 is
precisely what we shall need in order to obtain (in Section 3) a numerical representation of
the form of cognitively-constrained choice behavior under consideration.

We now formalize the notion of a relation system being “drawn from” a binary relation.

Definition 2 (foundation) A relation R is said to provide a foundation for a relation
system R if

⋃
A∈A RA ⊂ R. Such a foundation is said to be exact if

⋃
A∈A RA = R.

When perceived preferences are nested, an exact foundation for the preference system is
always provided by the relation encoding binary choices.

Definition 3 (base relation) The base relation Pb is defined by xPby if and only if y /∈
C(xy) (i.e., both C(xy) = x and x 6= y).

Proposition 2 If R is a nested relation system that generates C, then Pb provides an exact
foundation for R.

It follows that for the preference system to admit an acyclic foundation — any failure of
which Herzberger [14, p. 195] deems “extremely pathological” — the base relation must
itself be acyclic.

Condition 4 (Base Acyclicity) The relation Pb is acyclic.

And since, by Szpilrajn’s [27] Embedding Theorem, the transitive closure of any acyclic Pb

can be strengthened to a weak (or even to a linear) order, this condition suffices to restore
to the preference relation R the full complement of ordering properties originally demanded
in Theorem 1.

Theorem 3 A choice function is generated by a nested system of weak orders that admits
a weak order foundation if and only if it satisfies Base Acyclicity and Strong Expansion.

The following example makes clear that Theorem 3 inhabits the logical space between
Theorems 2B and 1/2A.

6This can be attributed to the fact that expansion consistency conditions in general impose ordering
properties on perceived preferences (as will become more apparent in Section 4), and it is only in the
classical world of full perception — that is to say, under Contraction — that these properties are inherited
by the preference assessments themselves.

7



Example 2 The choice function taking wx 7→ x, wy 7→ y, wz 7→ z, xy 7→ x, xz 7→ xz,
yz 7→ y, wxy 7→ xy, wxz 7→ xz, wyz 7→ yz, xyz 7→ xyz, and wxyz 7→ xyz is generated
by the nested system R of weak orders containing the comparisons xRwxw, yRwyw, zRwzw,
xRxyy, yRyzz, xRwxyw, yRwxyw, xRwxzw, zRwxzw, yRwyzw, zRwyzw, xRwxyzw, yRwxyzw,
and zRwxyzw; which in turn admits the weak order foundation R containing the compar-
isons xRw, yRw, zRw, xRy, xRz, and yRz. Moreover, this function satisfies both Strong
Expansion and (unlike the function in Example 1) Base Acyclicity, and violates Contraction.

3. Numerical representations

When the preference relation R can be encoded in a utility function f : X → < in the
sense that xRy if and only if f(x) > f(y), and when in addition R generates C, it follows
that ∀A we have C(A) = {x ∈ A : f(x) ≥ max f [A]}. In this case the members of each
choice set are the available alternatives that meet the maximizing criterion (see Section 1),
and when this is so we shall say that f constitutes a maximizing representation of the choice
function. In characterizing this and other forms of numerical representation, it is convenient
to adopt the simplifying assumption that the catalog X is finite. (See, e.g., Fishburn [12,
p. 27] for a more general analysis.) And under this restriction one characterization is a
straightforward consequence of Theorem 1.

Theorem 4 If X is finite, then a choice function admits a maximizing representation if
and only if it satisfies the Weak Axiom.

Since Proposition 1 and Theorem 4 together ensure (at least for the finite case) that
Contraction is necessary for the existence of a maximizing representation, our replacement
of this condition in Theorem 3 with the weaker Base Acyclicity axiom must introduce
the possibility of behavior inconsistent with the utility-maximization model. A suitable
generalization of this model (mentioned already in Section 1) posits together with the utility
function f a threshold mapping θ : A → < such that ∀A we have C(A) = {x ∈ A : f(x) ≥
θ(A)}. When in this sense the members of each choice set are the available alternatives
that meet the satisficing criterion, the pair 〈f, θ〉 will be said to constitute a satisficing
representation of the choice function.

As has just been suggested, a satisficing representation exists for any choice function
generated by a nested system of weak orders that admits a weak order foundation. It is
not true, however, that any choice function admitting a representation of this sort is thus
generated.

Example 3 The choice function defined by xy 7→ xy, xz 7→ xz, yz 7→ z, and xyz 7→ yz
admits the satisficing representation 〈f, θ〉 with utility values f(x) = 0, f(y) = 1, and
f(z) = 2 together with thresholds θ(x) = θ(xy) = θ(xz) = 0, θ(y) = θ(xyz) = 1, and
θ(z) = θ(yz) = 2. Moreover, this function satisfies Base Acyclicity and violates both Strong
Expansion and Contraction.

So to match the characterization in Theorem 3 exactly, it is necessary to identify the addi-
tional constraint on any satisficing representation imposed by the specified axioms.

Fix any representation 〈f, θ〉 of C and assume without loss of generality that ∀A we
have θ(A) = min f [C(A)]. Now, given menus A ⊂ B, suppose that max f [A] ≥ θ(B).
Choosing x, y ∈ C(A) such that f(x) = min f [C(A)] and f(y) = max f [C(A)], we have
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B

θ(B)

A

max f [A]

?

?

B

θ(B)

A

θ(A)

?

?

Figure 2: The property of expansiveness. Menus are indicated by solid boxes and choice
sets by dashed boxes. The function f increases towards the top of the figure. A satisficing
representation 〈f, θ〉 is expansive if ∀A ⊂ B we have either max f [A] < θ(B) (left panel) or
θ(A) ≥ θ(B) (right panel).

that f(x) = θ(A) and f(y) ≥ θ(B) by assumption, and hence that y ∈ C(B). If Strong
Expansion holds, it then follows that x ∈ C(B) and therefore that θ(A) = f(x) ≥ θ(B).

Definition 4 (expansiveness) A satisficing representation 〈f, θ〉 is said to be expansive
if ∀A ⊂ B such that max f [A] ≥ θ(B) we have θ(A) ≥ θ(B).

This new property, depicted graphically in Figure 2, amounts to a restatement of Strong
Expansion in terms of the representation at hand. (Specifically, the hypothesis max f [A] ≥
θ(B) corresponds to ∃y ∈ A ∩ C(B), while the conclusion θ(A) ≥ θ(B) corresponds to
x ∈ C(A) ⇒ x ∈ C(B).) Expansiveness is the constraint needed to bring satisficing
behavior in line with Theorem 3, and imposing it yields a characterization that generalizes
Theorem 4 in the same way that Theorem 2 generalizes Theorem 1.

Theorem 5 If X is finite, then: [A] A choice function admits a maximizing representation
if and only if it satisfies Contraction and Strong Expansion. [B] A choice function admits
an expansive satisficing representation if and only if it satisfies Base Acyclicity and Strong
Expansion.

As an exercise, the reader may wish to construct an expansive satisficing representation
of the choice function in Example 2. (Note that another function belonging to the class
characterized in Theorem 5B is exhibited in Figure 1 above.)

4. Alternative ordering assumptions

4.1. Acyclic orders

Our main results thus far (Theorems 2B and 3/5B) generalize the classical characteriza-
tions (Theorems 1/2A/4/5A) of choice behavior maximizing a preference relation with the
properties of a weak order. While we have modified the assumption of maximization while
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retaining the weak ordering hypothesis, other authors have done just the reverse. And by
simultaneously modifying both of these assumptions, we can demonstrate the robustness of
the link between nestedness and expansion consistency identified in Section 2.

We investigate first the case in which perceived preferences are required merely to be
free of cycles.7 Let C be generated by the nested system R of acyclic orders, and suppose
further that x ∈ ⋂

k∈K Ak ⊂
⋃

k∈K Ak = B for a given index set K and associated collection
of menus 〈Ak〉k∈K . If x /∈ C(B), then ∃y ∈ B such that yRBx. It follows that ∃l ∈ K such
that x, y ∈ Al ⊂ B, and hence that yRAl

x since R is nested. But then x /∈ C(Al), from
which we can deduce that x /∈ ⋂

k∈K C(Ak) as well.
This reasoning establishes that whenever our decision maker’s perceived preferences are

nested, any intersection of choice sets is included in the choice set attached to the union of
the corresponding menus. Once again, this is a condition that has been studied by Sen [20,
p. 314].

Condition 5 (Weak Expansion) ∀x and 〈Ak〉k∈K such that x ∈ ⋂
k∈K C(Ak) we have

x ∈ C (
⋃

k∈K Ak).

But while Sen uses this axiom together with Contraction to characterize behavior under
full perception, we can use it on its own to obtain an analogous result for the cognitively-
constrained case.

Theorem 6 [A] (Sen) A choice function is generated by an acyclic order if and only if it
satisfies Contraction and Weak Expansion. [B] A choice function is generated by a nested
system of acyclic orders if and only if it satisfies Weak Expansion.

The following example illustrates the logical gaps between Theorems 6B and 6A, on the
one hand, and Theorems 6B and 2B, on the other.

Example 4 The choice function defined by wx 7→ w, wy 7→ y, wz 7→ wz, xy 7→ x, xz 7→ z,
yz 7→ y, wxy 7→ x, wxz 7→ wxz, wyz 7→ yz, xyz 7→ y, and wxyz 7→ xyz is generated by
the nested system R of acyclic orders containing the comparisons wRwxx, yRwyw, xRxyy,
zRxzx, yRyzz, yRwxyw, xRwxyy, yRwyzw, zRxyzx, yRxyzz, and yRwxyzw. Moreover, this
function satisfies Weak Expansion and violates both Contraction and Strong Expansion.

4.2. Partial orders

Like acyclicity, transitivity offers “impressive credentials” ([14, p. 194]; see also Anand
[2]) as a consistency criterion for preference assessments, and we now examine the impact
of imposing both of these properties together. Let C be generated by the nested system R
of partial orders, and suppose further that x /∈ C(A∪ y) ⊂ A for given x ∈ A and y /∈ A. It
follows that ∃z ∈ A∪y such that zRA∪yx. If z ∈ A, then zRAx since R is nested, and hence
x /∈ C(A). Otherwise z = y, in which case z /∈ C(A ∪ y) and so ∃w ∈ A such that wRA∪yz.
But then wRA∪yx since R is transitive, wRAx since R is nested, and again x /∈ C(A).

This reasoning establishes that whenever the preference system is both nested and tran-
sitive, adding an alternative to a menu cannot render a previously chooseable alternative
unchooseable if the new alternative is itself unchooseable after its addition. What’s more,

7This is the weakest ordering hypothesis of interest, as it is easily shown that a nested relation system
can generate a choice function only if it is acyclic.
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this remains true for any set (B \ A, where A ⊂ B) of added alternatives, and it is in
this more general form that we shall state the incremental expansion consistency condition
corresponding to transitivity.8 (Cf. [15, p. 58] “Aizerman’s Axiom.”)

Condition 6 (Auxiliary Expansion) ∀x ∈ A ⊂ B such that both x ∈ C(A) and C(B) ⊂
A, we have x ∈ C(B).

Theorem 7 [A] A choice function is generated by a partial order if and only if it satisfies
Contraction, Weak Expansion, and Auxiliary Expansion. [B] A choice function is generated
by a nested system of partial orders if and only if it satisfies Weak Expansion and Auxiliary
Expansion.

The following example illustrates the logical gaps between Theorems 7B and 7A, on the
one hand, and Theorems 6B, 7B, and 2B, on the other.

Example 5 The choice function defined by wx 7→ w, wy 7→ y, wz 7→ w, xy 7→ x, xz 7→ x,
yz 7→ yz, wxy 7→ xy, wxz 7→ w, wyz 7→ yz, xyz 7→ x, and wxyz 7→ xy is generated by
the nested system R of partial orders containing the comparisons wRwxx, yRwyw, wRwzz,
xRxyy, xRxzz, yRwxyw, wRwxzx, wRwxzz, xRwxzz, yRwyzw, xRxyzy, xRxyzz, yRwxyzw, and
xRwxyzz. Moreover, this function satisfies both Weak Expansion and (unlike the function
in Example 4) Auxiliary Expansion, and violates both Contraction and Strong Expansion.

4.3. Linear orders

While only the weak order properties can be considered standard assumptions with
regard to preference assessments, it is sometimes useful to adopt the stronger hypothesis
that these judgments linearly order the available alternatives; to require, in other words, that
the decision maker be able to affirm a definite preference between any two distinct options.
To investigate this case, let C be generated by the nested system R of linear orders, and
suppose further that x, y ∈ C(A) for given x, y ∈ A. We then have both ¬[xRAy] and
¬[yRAx], and it follows that x = y since R is weakly connected.

This simple argument establishes that when our decision maker’s perceived preferences
are weakly connected, each choice set contains precisely one element.

Condition 7 (Univalence) ∀x, y ∈ A such that x, y ∈ C(A) we have x = y.

It is well known that in the presence of this condition, Contraction and Strong Expansion
are logically equivalent. And since both Strong Expansion and Univalence have been shown
to hold under our current assumptions on the preference system, we can conclude that there
is no distinction between full perception and cognitively-constrained choice in the linear
order case.

8When Weak Expansion is supplemented with Auxiliary Expansion, the consequences for the latent
preference system are actually somewhat subtle. As Theorem 6B guarantees, Weak Expansion alone is
sufficient for the choice function to be generated by a nested system R of acyclic orders, and it follows
that the transitive closure of R is a system of partial orders that generates C. This fact fails to invalidate
Theorem 7B, however, because the closure operation on relation systems does not in general preserve
nestedness. In this sense our “intracomponent” (ordering) and “intercomponent” (nestedness) assumptions
on the preference system do not act independently: Indeed, without nestedness no set of ordering properties
considered thus far would enforce any restriction whatsoever on the choice function.
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[a] Contraction
Strong Expansion and Univalence linear order

Strong Expansion weak order nested system of weak orders
Weak Expansion and Auxiliary Expansion partial order nested system of partial orders

Weak Expansion acyclic order nested system of acyclic orders

[b] Strong Expansion
nested system of weak orders that admits aBase Acyclicity
weak order foundation
nested system of weak orders

[c]* Strong Expansion
Contraction maximizing

Base Acyclicity expansive satisficing
*Here X is restricted to be finite.

Table I: Summary of characterization results. A choice function is generated by the indicated
cognitive structure (Tables Ia–Ib) or admits a representation of the indicated type (Table Ic)
if and only if it satisfies the marginal conditions.

Theorem 8 [A] A choice function is generated by a linear order if and only if it satisfies
Strong Expansion and Univalence. [B] A choice function is generated by a nested system of
linear orders if and only if it satisfies Strong Expansion and Univalence.

The reason that we fail to obtain a generalization of the classical theory in the present
instance can be expressed intuitively as follows. A decision maker whose preference system R
consists of weak orders is one who can always fully resolve his opinions at some level of
precision, though his discriminatory capabilities may depend upon (the complexity of) the
menu he faces. But if R consists of linear orders then these capabilities cannot in fact depend
upon the menu, since any weakly connected relation is by definition as discriminatory as
can be. And with nestedness serving to link the preferences perceived in different choice
problems, the decision maker turns out to be maximizing a single, menu-independent linear
order of the classical sort.

4.4. Summary of characterization results

Theorems 1–8, our characterization results for choice behavior based on fully or par-
tially perceived preferences, are summarized in Table I. Here the row and column headings
indicate different sets of conditions on the choice function, while the cells contain the associ-
ated cognitive structures or numerical representations. In Table Ia, juxtaposition of the two
columns reveals that deleting Contraction from a received characterization corresponds to
relaxing the assumption that the preference relation is fully perceived and assuming merely
that the preference system is nested, while at the same time transferring any ordering prop-
erties from the one to the other.9 (Of course, in the first row deleting Contraction has

9Note that these results link expansion consistency axioms to the (nestedness) requirement that perceived
preferences be preserved under contraction of the menu of alternatives. Similarly, axioms of contraction
consistency can be linked to the requirement that perceived preferences be preserved under expansion of
the menu. Here the terminological inversion is a consequence of the inverse relationship between preference
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no effect, since this condition is implied by the conjunction of Strong Expansion and Uni-
valence.) In Table Ib, we see that reimposing Base Acyclicity after Contraction has been
deleted corresponds to restoring to the preference relation the standard ordering properties.
And in Table Ic (where X is restricted to be finite), we see that following this deletion and
reimposition the decision maker exhibits a particular form of satisficing behavior.

5. Discussion

5.1. Related work

While it had seemed that the characterizations of cognitively-constrained choice behav-
ior summarized in Table Ia were completely novel, a referee has drawn the author’s attention
to an unpublished note by Duggan [10] that contains very similar results. Interestingly, Dug-
gan reaches these results from the starting point of social (rather than individual) choice
theory and uses them to draw conclusions about the properties of tournaments (rather than
about satisficing).

Our findings about numerical representations summarized in Table Ic have their own
antecedent in the work of Aleskerov and Monjardet [1] (for which citation the author is
indebted to Monjardet himself). From the present perspective, the contribution of these
authors is to have characterized satisficing behavior per se, absent both the expansiveness
requirement and the underlying motivation in terms of preference and cognition. This
they have done using an acyclicity condition somewhat stronger than that introduced in
Section 2.5 above.

Definition 5 (separation relation) The separation relation Ps is defined by xPsy if and
only if ∃A such that both x ∈ C(A) and y ∈ A \ C(A).

Condition 8 (Separation Acyclicity) The relation Ps is acyclic.

Theorem 9 (Aleskerov and Monjardet) If X is finite, then a choice function admits a
satisficing representation if and only if it satisfies Separation Acyclicity.

Manzini and Mariotti [17] consider choice functions produced lexicographically from
finite sequences of binary relations (which need not be weak orders as in the standard
lexicographic model). In general such functions need bear no particular relationship to
those studied in the present paper. But when the sequence of relations is of length two
(the case of “shortlisting”), the choice function generated can be shown to satisfy Weak
Expansion and therefore to fall under the purview of our Theorem 6B.

The model of “rationalization by multiple rationales” proposed by Kalai et al. [16] (see
also Apesteguia and Ballester [3]) can likewise be translated into the language of relation
systems, and nestedness can be guaranteed by adding fairly natural assumptions to their
framework.

5.2. Idempotence and reductionism

Consider again the choice function displayed in Figure 1. When facing the menu wyz,
a decision maker exhibiting this behavior succeeds in ruling out alternative w but remains

and choice: A (perceived) preference for one alternative over another is a reason not to choose the second
alternative, but not in itself a reason to choose the first. (See Sen [22, p. 66].)
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undecided between y and z. Since this leaves him with the new menu yz, and since the
associated choice set contains only z, should we not require that wyz 7→ z in the first place?
Note that this amounts to a demand that the following condition be satisfied.

Condition 9 (Idempotence) ∀x ∈ A such that x ∈ C(A) we have x ∈ C(C(A)).

Figuratively speaking, the reason we do not insist on Idempotence is that by the time our
decision maker gets around to the second application of his choice function to the “menu”
in his hand, the waiter has already reappeared. The agent facing wyz in Figure 1 is certain
that he does not wish to consume wildebeest, but has not yet been able to come to a definite
conclusion about the relative culinary merits of yak and zebra. He is dining in a large group,
however, his companions are already placing their orders, and he will next be called upon
to do so. Allowing the agent at this point to apply C a second time would amount to
delaying the ordering process unconscionably, and politeness dictates that in this situation
he should make a selection at once despite not yet having perceived his true preference
between yak and zebra. Less fancifully, we can say that Idempotence is not an attractive
condition because it runs directly counter to our basic assumption that the decision maker
is cognitively constrained: Indeed, the assertion that spending his cognitive budget once is
no different than spending it twice would seem to imply that this budget is either vanishing
or infinite.

The above argument against adopting Idempotence raises several related questions: If
our agent has a fixed cognitive budget, where is his budget constraint? If his perceptual ca-
pabilities are limited, what are the nature and origin of the supposed limitations? And if the
complexity of the decision-making environment prevents the construction of one preference
while allowing that of another, what explains this differential treatment?

Questions such as these implicitly advocate further reductionism; the derivation of the
decision maker’s preference system from something more concrete and fundamental. But
while there would be nothing wrong in principle with attempting to base our theory on a
more elaborate cognitive model, a number of good reasons can be given for avoiding this
approach at present. Firstly, theories that seek to express bounded rationality directly as
optimization under (cognitive or other) constraints often lead to conceptual difficulties such
as those discussed by Conlisk [9, pp. 686 ff.] and Elster [11, p. 25]. Secondly, detailed hy-
potheses about the process of decision making are most sensibly formulated in the context of
particular choice scenarios, such as the selection of an investment portfolio, but specializing
the analysis to any one application of this sort would tend to obscure the generality of our
contribution. And thirdly, an answer to the question of why one preference is perceived
while another is not has no counterpart in the theory of maximizing behavior, and so any
attempt to address this issue would cause the parallel development of our theory and its
classical progenitor to break down.

To appreciate this last point, imagine challenging the significance of the classical Theo-
rems 1 and 4 by posing questions similar to those above: If our agent prefers one alternative
over another, what reasons can he give for feeling this way? How did he go about evaluating
the alternatives and which of their characteristics weighed heavily in the comparison? To
what extent is the stated preference a product of introspection and to what extent one of
tradition, fashion, or other social factors?

These may be interesting questions, and answering them essential for understanding the
decision maker’s behavior completely. But doing so is not the task of classical choice theory,
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just as seeking to explain the mechanisms of cognition is not our aim here. In the same way
that standard results take as given the preference relation specifying tastes and attitudes,
we take as given the preference system specifying cognitive capabilities. Thus, in the new
theory as in the old, the focus is not on the origins of preference and perception but rather
on their implications for and revelation by observed choices.

Appendix

A. Revelation of perceived preference

Given a relation R, let us write R↑(A) = {x ∈ A : ∀y ∈ A we have ¬[yRx]} for the set of
R-maximal alternatives on the menu A. Given a relation system R, we similarly define the
set R↑(A) = {x ∈ A : ∀y ∈ A we have ¬[yRAx]}. The expression C = R↑ (resp., C = R↑)
will then indicate that R (resp., R) generates C, an assertion that can be usefully factored
— adopting a straightforward notation — into the upper bound inclusion C ⊂ R↑ (resp.,
C ⊂ R↑) and the lower bound inclusion R↑ ⊂ C (resp., R↑ ⊂ C). And finally, given two
relation systems R and Q, we shall write R ⊂ Q when ∀A we have RA ⊂ QA.

Our first task is to define a revealed preference relation and an analogous relation system
that can be used to demonstrate sufficiency of the stated axioms in the characterization
results of Sections 2 and 4.

Definition 6 [A] (global relation) The global relation Pg is defined by xPgy if and only
if ∀A such that x ∈ A we have y /∈ C(A). [B] (local relation system) The local relation
system Pl is defined by xPl

By if and only if ∀A ⊂ B such that x ∈ A we have y /∈ C(A).

The following result collects a number of useful facts about these objects. (Recall that
xPby if and only if y /∈ C(xy), while xPsy if and only if ∃A such that both x ∈ C(A) and
y ∈ A \ C(A).)

Proposition 3 [A] Pl
X = Pg ⊂ Pb ⊂ Ps. [B] Pb provides an exact foundation for Pl.

[C] Pl is nested. [D] C ⊂ Pl↑ ⊂ Pg↑. [E] Contraction implies that Pb ⊂ Pg, while Strong
Expansion implies that Ps ⊂ Pb. [F] Given any relation R such that C ⊂ R↑, we have
R ⊂ Pg. [G] Given any nested relation system R such that C ⊂ R↑, we have R ⊂ Pl.

Since the upper bound inclusions C ⊂ Pl↑ ⊂ Pg↑ hold tautologically, the following condi-
tions demarcate the classes of choice functions generated by, respectively, the global relation
and the local relation system.

Condition 10 [A] (Global Lower Bound) Pg↑ ⊂ C. [B] (Local Lower Bound)
Pl↑ ⊂ C.

Moreover, when C is generated by any relation R (resp., nested relation system R), then
Proposition 3F (resp., 3G) implies that Pg↑ ⊂ R↑ = C (resp., Pl↑ ⊂ R↑ = C). Thus we
can conclude that Global and Local Lower Bound provide exact characterizations of choice
behavior guided by, respectively, fully perceived preference relations and nested preference
systems.

The job of linking the above lower bound conditions with the more intuitive expansion
and contraction consistency axioms used in the main text is carried out by the next result.
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Proposition 4 [A] Contraction and Weak Expansion together are logically equivalent to
Global Lower Bound. [B] Weak Expansion is logically equivalent to Local Lower Bound.

And it then remains only to confirm that under the relevant conditions, the local rela-
tion system (and hence, by Proposition 3A, also the global relation) exhibits the ordering
properties called for in our various characterizations.

Proposition 5 [A] Pl is a system of acyclic orders. [B] Auxiliary Expansion implies
that Pl is a system of partial orders. [C] Strong Expansion implies that Pl is a system
of weak orders. [D] Strong Expansion and Univalence together imply that Pl is a system of
linear orders. [E] Base Acyclicity implies that Pl admits a weak order foundation.

B. Logical implications among conditions

Several logical implications among the choice-theoretic axioms defined in this paper
have not yet been mentioned, but are used in the proofs of (or otherwise pertinent to) our
characterizations. For completeness, these facts are stated in the following result.

Proposition 6 [A] Contraction implies Base Acyclicity. [B] Strong Expansion implies
both Weak Expansion and Auxiliary Expansion. [C] Separation Acyclicity implies Base
Acyclicity. [D] Base Acyclicity and Strong Expansion together imply Separation Acyclicity.

All relevant relationships among our various axioms are summarized in Figure 3.

C. Selected proofs

Here, as in Figure 3, conditions on the choice function are indicated by their initials.
Moreover, Theorem 1 is referred to as T1, Proposition 1 as P1, and so on.

Proof of Theorem 2. [B] Let SE hold, in which case WE holds by P6B. Then Pl is
a nested system of weak orders that generates C by P3C–D, P4B, and P5C. ‖ Let C be
generated by a nested system R of weak orders. If SE fails, then ∃x, y ∈ A ⊂ B such that
x ∈ C(B) = R↑(B) and y ∈ C(A) \ C(B) = R↑(A) \ R↑(B). It follows that ¬[yRBx],
¬[xRAy], and thus ¬[xRBy] since R is nested. Moreover, ∃z ∈ B such that zRBy, and
hence zRBx since R is negatively transitive. But then x /∈ C(B), contradicting x ∈ C(B).
Therefore SE holds.

Proof of Proposition 2. Let R be nested and let C = R↑. We then have xPby if and
only if xRxyy, and it follows that Pb =

⋃
x,y∈X Rxy ⊂

⋃
A∈A RA. On the other hand, since

R is nested we have xRAy only if xRxyy and therefore only if xPby, and it follows that⋃
A∈A RA ⊂ Pb.

Proof of Theorem 3. Let both BA and SE hold, in which case WE holds by P6B. Then Pl

is a nested system of weak orders that both admits a weak order foundation and generates
C by P3C–D, P4B, P5C, and P5E. ‖ Let C be generated by a nested system R of weak
orders that admits a weak order foundation R, in which case SE holds by T2B. Since Pb

provides an exact foundation for R by P2, it follows that Pb =
⋃

A∈A RA ⊂ R. But then,
since R is acyclic, Pb too must be acyclic. Therefore BA holds.
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Figure 3: Logical implications among conditions. A condition on the choice function is
indicated by its initials (e.g., the Weak Axiom by WA) and an implication by a directed
edge (e.g., WA implies C). Intersecting edges indicate a joint hypothesis (e.g., C and SE
together imply WA).

Proof of Theorem 5. [B] Let X be finite and let both BA and SE hold, in which case
SA holds by P6D and C admits a satisficing representation 〈f, θ〉 by T9. Without loss of
generality, we may assume that ∀A we have θ(A) = min f [C(A)]. Given A ⊂ B such that
max f [A] ≥ θ(B), we have that ∃y ∈ A ∩ C(B) and hence C(A) ⊂ C(B) by SE. It then
follows that θ(A) = min f [C(A)] ≥ min f [C(B)] = θ(B), and therefore 〈f, θ〉 is expansive. ‖
Let X be finite and let C admit an expansive satisficing representation 〈f, θ〉, in which case
SA holds by T9 and BA holds by P6C. Given x, y ∈ A ⊂ B such that both x ∈ C(A) and
y ∈ C(B), we have that max f [A] ≥ f(y) ≥ θ(B), that f(x) ≥ θ(A) ≥ θ(B) since 〈f, θ〉 is
expansive, and hence that x ∈ C(B). Therefore SE holds.

Proof of Theorem 6. [B] Let WE hold. Then Pl is a nested system of acyclic orders
that generates C by P3C–D, P4B, and P5A. ‖ Let C be generated by a nested system R
of acyclic orders. Then R ⊂ Pl by P3G, and hence Pl↑ ⊂ R↑ = C. But then WE holds by
P4B.

Proof of Theorem 7. [B] Let both WE and AE hold. Then Pl is a nested system
of partial orders that generates C by P3C–D, P4B, and P5B. ‖ Let C be generated by
a nested system R of partial orders, in which case WE holds by T6B. If AE fails, then
∃x ∈ A ⊂ B such that C(B) ⊂ A and x ∈ C(A) \ C(B) = R↑(A) \ R↑(B), and it
follows that ∃y1 ∈ B such that y1RBx. [Inductive step begins.] Let yk ∈ B be such
that ykRBx. If yk ∈ A then ykRAx since R is nested, contradicting x ∈ R↑(A). Thus
yk ∈ B\A ⊂ B\C(B), and so yk /∈ C(B) = R↑(B) and ∃yk+1 ∈ B such that yk+1RBykRBx.
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Furthermore, yk+1RBx, since R is transitive. [Inductive step ends.] Using induction, we can
construct a set D = y1y2 · · · ⊂ B with the property that ∀k ≥ 1 we have yk+1RByk and
hence yk+1RDyk since R is nested. But then C(D) = R↑(D) = ∅, contradicting C(D) 6= ∅.
Therefore AE holds.

Proof of Theorem 8. [B] Let both SE and U hold, in which case WE holds by P6B. Then
Pl is a nested system of linear orders that generates C by P3C–D, P4B, and P5D. ‖ Let C
be generated by a nested system R of linear orders, in which case SE holds by T2B. If U
fails, then ∃x, y ∈ A such that x 6= y and x, y ∈ C(A) = R↑(A). But then ¬[xRAy] and
¬[yRAx], contradicting the weak connectedness of R. Therefore U holds.

Proof of Proposition 3. [A] That Pl
X = Pg is immediate. ‖ If yPgx, then x /∈ C(xy) and

hence yPbx. ‖ If xPby then y /∈ C(xy) and x ∈ C(xy), so xPsy. [B] Since xPby if and only if
xPl

xyy, we have Pb =
⋃

x,y∈X Pl
xy ⊂

⋃
A∈A Pl

A. On the other hand, since Pl is nested we have
xPl

Ay only if xPl
xyy and hence only if xPby, and it follows that

⋃
A∈A Pl

A ⊂ Pb. [C] That
Pl is nested is immediate. [D] Given x, y ∈ A, if yPl

Ax then x /∈ C(A). By contraposition,
C ⊂ Pl↑. ‖ Given A, we have Pg ∩ (A × A) = Pl

X ∩ (A × A) ⊂ Pl
A since Pl is nested, and

it follows that Pl
A↑(A) ⊂ Pg↑(A). Therefore Pl↑ ⊂ Pg↑. [E] Let C hold. If xPby then

y /∈ C(xy) and ∀A ⊃ xy we have y /∈ C(A) by C, which is to say that xPgy. Therefore
Pb ⊂ Pg. ‖ Let SE hold. If xPsy then ∃A such that x ∈ C(A) and y ∈ A \ C(A). Since
xy ⊂ A we then have y /∈ C(xy) by SE, which is to say that xPby. Therefore Ps ⊂ Pb. [F]
Let C ⊂ R↑. If ¬[xPgy] then ∃A such that x ∈ A and y ∈ C(A) ⊂ R↑(A), and thus ¬[xRy].
By contraposition, R ⊂ Pg. [G] Let R be nested and let C ⊂ R↑. If ¬[xPl

Ay] then ∃B ⊂ A
such that x ∈ B and y ∈ C(B) ⊂ R↑(B). But then ¬[xRBy] and hence ¬[xRAy] since R is
nested. By contraposition, R ⊂ Pl.

Proof of Proposition 4. [B] Let WE hold. Given x, y ∈ B such that x ∈ Pl↑(B), we
have that ¬[yPl

Bx] and so ∃Ay ⊂ B such that y ∈ Ay and x ∈ C(Ay). It follows that
x ∈ ⋂

y∈B C(Ay) ⊂ C(
⋃

y∈B Ay) = C(B) by WE, and therefore LLB holds. ‖ Let LLB hold.
If x ∈ ⋂

k∈K C(Ak) then x ∈ ⋂
k∈K Pl↑(Ak) by P3D, x ∈ Pl↑(⋃k∈K Ak) since Pl is nested,

and x ∈ C(
⋃

k∈K Ak) by LLB. Therefore WE holds.

Proof of Proposition 5. [A] If Pl is not acyclic, then ∃x1, x2, . . . , xn ∈ B such that
x1P

l
Bx2P

l
B · · ·Pl

BxnPl
Bx1. Letting A = x1x2 · · ·xn ⊂ B, we have that x1P

l
Ax2P

l
A · · ·Pl

AxnPl
Ax1

since Pl is nested. But then ∅ = Pl↑(A) ⊃ C(A) by P3D, contradicting C(A) 6= ∅. Therefore
Pl is a system of acyclic orders. [B] Let AE hold. Then Pl is acyclic by P5A. If Pl is not
transitive, then ∃x, y, z ∈ D such that xPl

DyPl
Dz and ¬[xPl

Dz]. In this case ∃A ⊂ D such
that x ∈ A and z ∈ C(A), and letting B = A ∪ y ⊂ D we have that xPl

ByPl
Bz since Pl is

nested. Since C(B) ⊂ Pl↑(B) by P3D it follows that C(B) ⊂ A ⊂ B and z ∈ C(A) \C(B),
contradicting AE. Therefore Pl is a system of partial orders. [C] Let SE hold. Then
Pl is acyclic and transitive by P5A–B and P6B. If Pl is not negatively transitive, then
∃x, y, z ∈ D such that ¬[xPl

Dy], ¬[yPl
Dz], and xPl

Dz. In this case ∃A ⊂ D such that x ∈ A
and y ∈ C(A) and, moreover, ∃B ⊂ D such that y ∈ B and z ∈ C(B). In view of the fact
that x, z ∈ A ∪ B ⊂ D, we have also xPl

A∪Bz since Pl is nested and hence z /∈ C(A ∪ B)
by P3D. Now, given any w ∈ C(A ∪ B), if either w ∈ B or y ∈ C(A ∪ B) then both
C(A∪B)∩B 6= ∅ and z ∈ C(B)\C(A∪B), contradicting SE. Alternatively, if both w /∈ B
and y /∈ C(A ∪ B) then both w ∈ C(A ∪ B) ∩ A 6= ∅ and y ∈ C(A) \ C(A ∪ B), again
contradicting SE. Therefore Pl is a system of weak orders. [D] Let both SE and U hold.
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Then Pl is acyclic, transitive, and negatively transitive by P5A–C and P6B. If Pl is not
weakly connected, then ∃x, y ∈ D such that x 6= y, ¬[xPl

Dy], and ¬[yPl
Dx]. In this case

∃A ⊂ D such that x ∈ A and y ∈ C(A) and, moreover, ∃B ⊂ D such that y ∈ B and
x ∈ C(B). If x ∈ C(xy), then x ∈ C(A) by SE, contradicting U. Alternatively, if y ∈ C(xy)
then y ∈ C(B) by SE, again contradicting U. Therefore Pl is a system of linear orders. [E]
Let BA hold. Then the transitive closure of Pb is a partial order which by the Embedding
Theorem can be strengthened to a weak order R. And since Pb provides a foundation for
Pl by P3B, the weak order R ⊃ Pb also provides a foundation for Pl.

Proof of Proposition 6. [A] Let C hold. Since Pb ⊂ Pg by P3E and Pg is acyclic by P3A
and P5A, Pb too is acyclic and BA holds. [B] Let SE hold. Given x ∈ ⋂

k∈K C(Ak) and
y ∈ C (

⋃
k∈K Ak), we have that ∃l ∈ K such that y ∈ Al. We then have both Al ⊂

⋃
k∈K Ak

and x ∈ C(Al), and it follows that x ∈ C (
⋃

k∈K Ak) by SE. Hence WE holds. ‖ Let SE hold.
Given x ∈ A ⊂ B such that both x ∈ C(A) and C(B) ⊂ A, we have that ∃y ∈ C(B) ∩ A
and so x ∈ C(B) by SE. Therefore AE holds. [C] Let SA hold. Since Pb ⊂ Ps by P3A and
Ps is acyclic, Pb too is acyclic and BA holds. [D] Let both BA and SE hold. Since Ps ⊂ Pb

by P3E and Pb is acyclic, Ps too is acyclic and SA holds.
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