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ARTICLE

ASCOT identifies key regulators of neuronal
subtype-specific splicing
Jonathan P. Ling 1,2, Christopher Wilks3,4, Rone Charles3,4, Patrick J. Leavey 2, Devlina Ghosh2, Lizhi Jiang2,

Clayton P. Santiago2, Bo Pang2, Anand Venkataraman 2, Brian S. Clark 5, Abhinav Nellore6,7,8,

Ben Langmead 1,3,4,13* & Seth Blackshaw 1,2,9,10,11,12,13*

Public archives of next-generation sequencing data are growing exponentially, but the diffi-

culty of marshaling this data has led to its underutilization by scientists. Here, we present

ASCOT, a resource that uses annotation-free methods to rapidly analyze and visualize splice

variants across tens of thousands of bulk and single-cell data sets in the public archive. To

demonstrate the utility of ASCOT, we identify novel cell type-specific alternative exons

across the nervous system and leverage ENCODE and GTEx data sets to study the unique

splicing of photoreceptors. We find that PTBP1 knockdown and MSI1 and PCBP2 over-

expression are sufficient to activate many photoreceptor-specific exons in HepG2 liver cancer

cells. This work demonstrates how large-scale analysis of public RNA-Seq data sets can yield

key insights into cell type-specific control of RNA splicing and underscores the importance of

considering both annotated and unannotated splicing events.
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RNA-Seq is a powerful tool for studying gene expression,
alternative splicing, and post-transcriptional regulation. Its
utility has made it one of the most common experimental

data types stored in the Sequence Read Archive1 and other related
international archives2. However, public archives store raw,
unprocessed data. Drawing new conclusions from many raw
RNA-Seq data sets requires a level of computational power and
expertise that is out of reach for most labs. Likewise, the need to
analyze this data from scratch leads to unnecessary duplications
of effort across research groups3,4. To address this, we previously
developed a bioinformatics pipeline (Rail-RNA)5,6 and created
the recount2 (ref. 7) resource and accompanying Snaptron8 query
engine. Together, these allow researchers to query publicly
available RNA-Seq data in a standardized and reproducible
manner. In this work we focus on the alternative splicing use case
for RNA-Seq data.

Alternative splicing of pre-mRNA (RNA splicing) is a highly
regulated process that generates extensive transcriptomic and
proteomic diversity across all cell types. RNA splicing is governed
by both cis-regulatory elements (specific sequences in the pre-
mRNA that influence the strength of a splice site) and trans-
acting splicing factors (RNA-binding proteins that can act as
either splicing enhancers or repressors). RNA-Seq has accelerated
our understanding of how alternative splicing networks are
coordinated, in part through the meta-analysis of RNA-Seq
data gathered from many independent experiments9,10. Numer-
ous algorithms for alternative splicing analysis have been
developed11–27, including several recent studies that propose
useful models for studying complex splicing patterns in RNA-Seq
data11,13,25. However, there is a need for new methods that can
summarize alternative splicing across thousands of public data
sets in a unified manner, without relying on prior transcript
annotation28,29.

Our work aims to make alternative splicing analysis of public
RNA-Seq data accessible to the general researcher by reducing
computational barriers to entry. We have developed alternative
splicing catalog of the transcriptome (ASCOT), a resource that
allows users to query alternative splicing and gene expression
across a wide range of cell types and tissues from mouse and
human. ASCOT uses an annotation-free method to quickly
identify splice-variants in large-scale databases of splice junction
counts derived from the public archive8. ASCOT performs a
rapid and computationally inexpensive “junction-walking” strat-
egy to calculate the percent spliced-in (PSI) ratio for a given exon,
whereby inclusion and exclusion junctions are predicted using
only counts from a splice junction database (Supplementary
Fig. 1). ASCOT focuses on identifying binary splicing decisions,
as these represent the majority of alternative splicing events
(Supplementary Fig. 2). Although it is possible to capture more
complex splicing variation with nested decision trees, here we
focus on four easily interpretable and binary splicing patterns:
cassette exons, alternative splice site exon groups, linked exons,
and mutually exclusive exons. This exon-centric approach can
rapidly capture much of the alternative splicing in the tran-
scriptome, while simultaneously calculating each exon’s PSI
across thousands of indexed data sets.

We then used ASCOT to analyze data sets from a manually
curated list of purified mouse cell types (732 run accessions) in
the Sequence Read Archive (SRA), tissue data sets from the
human Gene Tissue Expression Consortium30 (GTEx – 9,662 run
accessions), shRNA-Seq data sets from the ENCODE Pro-
ject10,31,32 (1,159 run accessions), 43 single-cell studies (33,303
cells) in human and mouse including the Allen Brain Institute
adult mouse primary visual cortex study33, and over 50,000 other
human RNA-Seq run accessions from the SRA as generated for
the recount2 database. To demonstrate the utility of our work, we

used ASCOT to characterize the cell type-specific splicing pat-
terns of rod photoreceptors.

The vertebrate nervous system derives much of its transcriptomic
and proteomic diversity from highly specific alternative splicing
patterns that are not present elsewhere in the body34. Many neu-
ronal subtypes, such as rod photoreceptors, also exhibit alternative
exons that are only detected in that specific cell type35–38. Photo-
receptors are cells within the retina that sense light and transduce
this information for the brain. These sensory neurons are unique in
terms of morphology, metabolism, and function — characteristics
that may require specialized alternative exons35,39–47. Photoreceptor
degeneration is the main cause of hereditary blindness in the
developed world. While some forms of vision loss can be success-
fully managed with therapies such as angiogenesis inhibitors,
prosthetic devices, or tissue transplantation, few treatments exist for
blindness that is directly caused by photoreceptor degeneration.
Understanding how photoreceptor-specific splicing patterns emerge
may facilitate development of cell-based regenerative strategies for
treating photoreceptor dystrophies.

Results
Identification of cell type-specific alternative exons. We first
tested if we could use ASCOT to identify neuron-specific splicing
patterns (Fig. 1). Publicly available RNA-Seq data sets from
mouse cell types across the body were manually curated from the
SRA and incorporated into ASCOT as a data compilation called
MESA: mouse expression and splicing atlas. All data is openly
available at http://ascot.cs.jhu.edu/. These cell types were isolated
by different research groups using fluorescence-activated cell
sorting (FACS) or affinity purification. As expected, we identified
many exons that were highly utilized (high PSI) in neurons but
skipped by other cell types (Fig. 1a). We also identified exons
exhibiting the opposite pattern, having high PSI across most cell
types but low PSI in neuronal cell types. Exons enriched in
neurons could be further categorized based on their use in
muscles and/or pancreatic islet cells. Finally, an analysis of NRL-
positive rod photoreceptors48, profiled at several timepoints from
postnatal day 2 (P2) to P28, revealed that rods utilize only a
subset of pan-neuronal exons, and exclude many other exons that
have high PSI across other neuronal subtypes. This is consistent
with the observation that rods do not express many common
neuronal splicing factors35 (Supplementary Fig. 3). Next, we
tested whether we could identify alternative exons utilized only by
a single brain cell type, despite near ubiquitous expression of the
associated gene. We found many examples of cell type-specific
exons, of which ~70% (168/239) were entirely unannotated in
GENCODE release M20 (Supplementary Data 1, RT-PCR vali-
dation in Supplementary Fig. 4). For instance, an exon in Sptan1
is only used by cochlear hair cells (Fig. 1b), an exon in Cnih1 is
selectively used by excitatory pyramidal neurons (Fig. 1c), and an
exon in Exoc6b is selectively used in oligodendrocytes (Fig. 1d).

Photoreceptor-specific exons shared between mouse and
human. We next sought to cross-validate our mouse cell type
results with RNA-Seq data from human tissue. The Genotype-
Tissue Expression (GTEx) project is a public archive of 9,662
human RNA-Seq samples across 53 tissues, although it is missing
retinal tissue. We therefore analyzed GTEx data sets, supple-
mented with RNA-Seq data from peripheral retina49, and iden-
tified tissue-specific alternative exons (Supplementary Data 2).
We identified ~104 exons that are selectively utilized in human
retina, compared to all other GTEx human tissues (Fig. 2a, b). In
the mouse genome, we identified ~88 exons that were enriched
in rod photoreceptors, compared to all other mouse cell types in
MESA. Cross referencing human retina-specific exons and mouse
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photoreceptor-specific exons revealed only 31 splicing events
(found in 28 genes) that were common between both species.
These 28 genes generally fall under pathways of cilia formation,
neuronal connectivity and various metabolic pathways. Likewise,
mutations in several genes are linked to retinitis pigmentosa or
intellectual disability, underscoring their functional importance
(Fig. 2c). Among the 31 rod-specific splicing events, 17/31 have

been previously identified while 14/31 have not been reported in
the literature (Supplementary Fig. 5). Comparison of results
between mouse and human is important since there can be sig-
nificant variation in splicing specificity between species. For
example, an exon in mouse Cep290 is only utilized by photo-
receptors, but the alternative exon in human CEP290 is con-
stitutively spliced across all human tissues.
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Cross-validation of splicing analysis using single-cell data. To
further test the sensitivity of our method, we incorporated single-
cell RNA-Seq data sets generated using full-length library stra-
tegies (e.g. SmartSeq, Fluidigm) into ASCOT as a compilation
called CellTower and analyzed the PSI tables for cell type-specific
splicing patterns. Droplet-based strategies that sequence short
sequences from the polyA tail (e.g. DropSeq, 10x Genomics) are
useful for gene-level quantification, but are unable to capture
most alternative splicing events. By contrast, single-cell protocols
that capture sequences across the full transcript can analyze
splicing, given sufficient read depth. The Allen Brain Institute
recently generated extremely high coverage single-cell data sets
from adult mouse primary visual cortex33 and clustered cells into
49 types (19 glutamatergic, 23 GABAergic, and 7 non-neuronal).
Our analysis identified many alternative exons that showed not
only differential usage between glutamatergic, GABAergic, and
non-neuronal cell types, but also high variation within each broad
grouping (Supplementary Fig. 6a). We were also able to identify
mutually exclusive exons that varied among cell types, including
those previously analyzed33 (Supplementary Fig. 6b). Having
validated our approach using single-cell RNA-Seq data, we then
analyzed a data set containing both retinal progenitor cells and
immature postmitotic precursor cells50 from embryonic days E14,
E18 or P2 that were profiled using Smart-Seq. We found that rod-
specific exons in Atp1b2 and Ttc8 were detectable at low levels in
early photoreceptor precursors, but not in retinal progenitors or
postmitotic precursors of other retinal cell types (Supplementary
Fig. 6c). Lastly, we confirmed that cell type-specific alternative
exons in Sptan1, Cnih1, and Exoc6b (Fig. 1b–d) exhibited the
same specificity in CellTower (Supplementary Fig. 6d).

Using gene expression to identify candidate splicing factors.
What are the splicing factors that mediate rod-specific splicing
patterns identified in MESA (Fig. 3a)? Although rods do not
express many of the RNA-binding proteins (RBPs) thought to be
involved in regulating alternative splicing in neurons35 (Supple-
mentary Fig. 3), they do show similar relative expression levels of
Polypyrimidine tract-binding protein 1 (Ptbp1) and its paralog
Ptbp2 (Fig. 3b). High levels of Ptbp1 repress many exons, and
downregulation of Ptbp1 accompanied by an upregulation of Ptbp2
is an important prerequisite for neuronal splicing36,37,51–60. We
hypothesized that certain RBPs, acting as splicing enhancers, could
be selectively expressed in rods to mediate rod-specific splicing.
We defined a list of putative splicing factors by identifying genes
with RNA-binding domains, as determined by RBPDB61, in the
InterPro database. Overlapping rod-enriched genes with putative
splicing factors revealed two top candidates, Musashi RNA-
binding protein 1 (Msi1) and Poly(rC)-binding protein 2 (Pcbp2),
that were expressed at much higher levels in rods relative to other
cell types across the body. This is consistent with previous work
demonstrating that Msi1 promotes photoreceptor-specific spli-
cing35, although no studies have yet shown if Pcbp2 performs a

similar function. We also considered the possibility that knock-
down of constitutive splicing factors could activate rod-specific
exons. However, analysis of 1,159 data sets from the ENCODE
shRNA-Seq project31,32 did not reveal any shRNA knockdown
that could activate rod-specific exons (Fig. 4a).

MSI1 and PCBP2 induce rod-specific splicing in non-neurons.
To test whether MSI1 and PCBP2 overexpression was sufficient to
activate rod-specific exons, we transfected these proteins into
HepG2 cells, a liver cancer cell line used by the ENCODE project.
Initially, we found that normal transfection of MSI1 or PCBP2
could not activate rod-specific exons (Supplementary Fig. 7).
However, given the extremely high expression of these factors in
mature rods, we hypothesized that the average expression levels
achieved by transfection were not high enough to induce rod-
specific splicing. We therefore used FACS to isolate the most
strongly GFP-positive MSI1/PCBP2-transfected HepG2 cells (with
or without simultaneous knockdown of PTBP1) to more accurately
reflect the expression levels of these splicing factors seen in mature
rods. These robustly transfected cells had significant activation of
rod-specific exons (Fig. 4a, Supplementary Data 3). Specifically,
PCBP2 activated a single rod-specific exon in the monocarboxylate
transporter Basigin (BSG) independent of PTBP1 knockdown; BSG
is necessary for photoreceptor survival42–44. By contrast, high
expression of MSI1 activated an extremely broad range of exons
and appears to strongly synergize with PTBP1 downregulation
(Fig. 4a, Supplementary Fig. 8). Not only are high levels of MSI1
capable of activating rod-specific exons in HepG2 cells, we also
observed activation of neuronal/muscle enriched exons thought to
be regulated by PTBP1 knockdown. Indeed, exon activation by
MSI1 alone was stronger than the effect of knockdown of PTBP1
alone, suggesting a more complex interaction between MSI1 and
PTBP1 (Supplementary Fig. 8).

High levels of MSI1 lead to splicing-in of cryptic exons.
Interestingly, we also identified human-specific exons that were
activated by high levels of MSI1, many of which are not found in
any other tissue (Fig. 4a, Supplementary Data 3). These cryptic
exons are likely incidentally activated by the extremely high
expression of MSI1 in the most robustly transfected cells. This
contrasts with previous work in which cryptic exons are activated
as a result of knockdown of splicing factor repressors51,57,62–64.
MSI1 has been reported to selectively bind to RNA that contain
multiple UAG sequences35,65–71. A motif analysis reveals that
UAG clusters are significantly enriched at the proximal intron of
the 5’ splice site (Fig. 4b); this pattern was consistent for both
alternative and cryptic exons. Of the 31 rod-specific exons com-
mon between mouse and human, the majority are flanked by
binding motifs for both PTBP1 and MSI1 (Supplementary Fig. 9).
Using previously published Msi1 CLIP-Seq72 data, we also iden-
tified several photoreceptor-specific exons with Msi1 CLIP peaks,

Fig. 1 Alternative exons enriched in the nervous system (MESA compilation). a Mouse RNA-Seq data sets were manually curated from the SRA,
covering a broad range of cell types and organs. Cell type data sets were generated from various independent labs using FACS or affinity isolation. To test
our algorithm, we identified alternative exons that were differentially spliced between neuronal cell types and other cell types in the body and found that
exons could be generally clustered by their inclusion or exclusion in rods, neurons, muscles, pancreas, or global non-neuronal (right columns). Each row is
an individual exon, and exon utilization is measured by a percent spliced in (PSI) ratio as indicated by gradient legend (bottom). The overlap between
neuronal exons and muscle cell types agrees with previous observations from our work51 and others58–60, suggesting that these exons are at least partially
activated by Ptbp1 downregulation. There is only partial overlap between rod exons and neuron-enriched exons, which is not unexpected since rods do not
express many neuron-enriched splicing factors (Supplementary Fig. 3). b–d Our splicing analysis method reliably identifies alternative exons that are
unique to specific cell types. For example, an exon in Sptan1 is specifically enriched in cochlear hair cells, despite ubiquitous expression across all organs
and cell types (b). Likewise, an exon in Cnih1 is specifically enriched in pyramidal neurons (c) and an exon in Exoc6b is selectively enriched in myelinating
oligodendrocytes (d).
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supporting a mechanism of direct interaction (Supplementary
Fig. 10). UAG motif frequencies were compared to a baseline of all
protein coding exons (<400 bp) in the GENCODE v28 basic gene
annotation and exon examples are visualized in Fig. 5a.

Msi1 knockdown abolishes photoreceptor-specific splicing.
Finally, we wanted to test whether loss of Msi1 or Pcbp2 function
would result in a reduction of rod-specific exon splicing. We
electroporated mouse retinal explants with shRNA or dominant
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negative versions of Msi1 and Pcbp2 (Fig. 5b) and found that
while reducing PCBP2 function did not affect splicing of the rod-
specific exon in Bsg, reducing Msi1 function with shRNA or a
dominant negative protein blocked rod-specific splicing (Sup-
plementary Fig. 11). We confirmed that this result was specific to
Msi1 by electroporating shRNA targeting Msi2 (an Msi1 homo-
log), and found that Msi2 shRNA did not reduce rod-specific
splicing. We then analyzed the expression of a set of genes cor-
related with photoreceptor differentiation73 and found that Msi1
loss of function leads to expression patterns that resembled
immature P2-P4 photoreceptors (Supplementary Fig. 11AA).
Overall, expression of dominant negative Msi1 mimics Msi1
knockdown, but produces a somewhat weaker effect (Fig. 5b).
Interestingly, while most rod-specific exons are reduced after
Msi1 knockdown, some rod-specific exons remain robustly
incorporated (e.g. Doc2b, Ppp3cc, Plekhb1).

Discussion
We have developed ASCOT, a resource that enables researchers
to more easily perform cross-study splicing and expression ana-
lyses of public RNA-Seq data. ASCOT rapidly calculates exon
PSIs and alternative splicing patterns using an annotation-free
method that queries splice junction count tables. ASCOT’s user
interface and associated splicing/expression data sets are openly
available at http://ascot.cs.jhu.edu. Although there have been past
efforts to summarize public RNA-Seq data28,29,74, ASCOT
represents the largest effort to date to make alternative splicing
and gene expression summaries of diverse data sets available to
general researchers. ASCOT also demonstrates the value of using
annotation-free methods to summarize publicly archived data.

Beyond scalability, ASCOT has several other advantages for
analyzing cell type-specific alternative splicing. First, data set col-
umns in splicing and expression summaries can be easily grouped
and regrouped depending on the researchers needs, a feature that
is especially useful for analyzing single-cell data (Supplementary
Fig. 6). For example, clustering neonatal inner ear cells75 based on
primary cell type confirms that the exon in Sptan1 (Fig. 1b) is only
present in cochlear and vestibular hair cells and is absent in other
inner ear cell types. Alternative splicing and gene expression data
for these inner ear data sets, and a variety of other single-cell RNA-
Seq studies, are available under the CellTower compilation of
ASCOT (http://ascot.cs.jhu.edu). Data set clustering can also help
identify alternative exons in bulk data that may be missed due to
low gene expression. For example, by clustering GTEx data sets by
organ, we can identify many exons that are differentially utilized
between brain and heart that were not detected in Leafcutter’s
shiny app visualization, LeafViz (https://leafcutter.shinyapps.io/
leafviz/)11 (Supplementary Fig. 13). Second, ASCOT does not
require transcript references to identify alternative splicing events,
and is therefore unbiased toward annotated or unannotated exons.
We estimate that ~40-60% of mouse and ~10-30% of human
cassette exons identified by ASCOT are unannotated (Supple-
mentary Fig. 12). Third, ASCOT can answer custom queries that

go beyond the data sets summarized in this study. For example, we
queried rod-specific exons across 50,062 public data sets in the
SRA (SRAv2 Snaptron compilation) to estimate the frequency of
retinal data sets in the public archive (Supplementary Fig. 14). We
found 37 data sets (0.07%) that had high PSI levels of rod-specific
exons, and confirmed that these data sets were indeed from human
retina. Finally, ASCOT can harmonize single- and paired-end
RNA-Seq data of various read lengths. By starting from a splice
junction count table, ASCOT can analyze alternative splicing
across tens of thousands of archived RNA-Seq data sets without
having to restart each analysis from raw fastq reads.

ASCOT is currently limited by its inability to detect complex
alternative splicing events that other algorithms11,13 can identify.
We intentionally targeted binary splicing decisions as they have a
straightforward biological interpretation and represent the
majority of alternative splicing events. However, complex splicing
can certainly be modeled with nested decision trees that would
still be compatible with a junction-walking strategy. We believe
that splice junction count tables contain enough information to
build these splice models. Also, ASCOT does not attempt to
model biases that can distort junction counts, such as GC content
or secondary structure. We plan for future versions of ASCOT to
model and mitigate these effects.

We used ASCOT to study tens of thousands of data sets from
SRA, ENCODE, GTEx. Analyzing splicing factor gene expression
across various mouse cell types allowed us to identify MSI1 and
PCBP2 as candidates for inducing rod-specific splicing patterns,
while the ENCODE shRNA-Seq data confirmed for us that
knockdown of constitutive splicing factors could not activate rod-
specific exons. Taken together, these observations led to the
hypothesis that manipulating certain splicing factors could lead to
rod-like splicing patterns. Only with this hypothesis in mind were
we able to generate new data to conclude that robust overexpression
of PCBP2 and MSI1 combined with PTBP1 knockdown was able to
activate rod-specific exons, even in a non-neuronal cell line such as
HepG2. This study is emblematic of a larger shift toward using
public data sets, often pre-summarized or indexed, to generate
hypotheses and narrow the scientific question prior to designing
experiments and generating new data. Resources such as ASCOT
can save researchers much time and effort, as well as create new
avenues of research for smaller labs with limited funding.

Together, our results suggest a model of photoreceptor splicing
regulation (Fig. 5c) whereby MSI1 and PTBP1 downregulation
interact synergistically. MSI1 overexpression leads to the incor-
poration of PTBP1-repressed exons, while PTBP1 downregulation
increases MSI1’s ability to activate rod-specific exons (Supple-
mentary Fig. 8). We have also identified that PCBP2 is another
regulator of photoreceptor-specific splicing. The rod-specific exon
in BSG is essentially undetectable in all non-retinal tissues and
PCBP2 overexpression increases the exon PSI to ~8% (PSI in
photoreceptors is >80%). However, mouse retina electroporation
of shRNA and dominant negative constructs targeting PCBP2 did
not reduce levels of the rod-specific BSG exon, suggesting that

Fig. 2 Splicing analysis of the GTEx database reveals retina-specific exons. We cross-referenced our mouse splicing analysis with human RNA-Seq data
sets generated by the GTEx consortium30. We also supplemented our analysis with data sets from peripheral retina49, since GTEx did not sequence retinal
tissue. a Similar to our mouse splicing analysis, we find many exons that are brain-enriched and that some of these exons are also present in skeletal muscle
and heart. We also find that some exons are utilized in the pituitary and testes, tissues that are not present in our mouse database. We do not find overlaps in
exon usage with GTEx pancreas because these data sets are generated from whole pancreas instead of pancreatic islets or α and β-cells. Importantly, we can
identify alternative exons that are only spliced in retina. b Bigwig visualizations of raw GTEx RNA-Seq data. An exon inMARK4 is present in retina, brain, and
muscle. An exon in CLTB is present in retina and brain. Two exons, one in IMPDH1 and one in BSG, are only present in retina and not in other GTEx tissues.
c Comparing rod-specific exons in mouse with retina-specific exons in human yields a set of 31 exons that are likely important for photoreceptor function.
Genes with rod-specific exons can be clustered under a variety of pathways from cilia formation and neuronal signaling to metabolism and GPCR pathways
(left). Mutations in several of these genes are also associated with either retinitis pigmentosa or intellectual disability (right).
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PCBP2 overexpression can activate the exon in non-neuronal cells
but is not required to maintain splicing in mature photoreceptors.
By contrast, knockdown of Msi1 in electroporated mouse retina
abolishes most of the rod-specific splicing events, leading to a
delay in photoreceptor maturation (Supplementary Fig. 11).

Although high levels of MSI1 are required for photoreceptor-
specific splicing, our results indicate that MSI1 expression levels
must still be titrated, since excessive overexpression in HepG2
cells led to the incorporation of deleterious, cryptic exons
(Fig. 4a).
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These cryptic exons reinforce the importance of obtaining
human RNA-Seq data at the resolution of individual cell types, as
there can be significant differences in splicing between mouse and
human. With ASCOT, we identified 31 photoreceptor-specific
splicing events that are common between mouse and human.
However, this analysis is incomplete since isolated mouse pho-
toreceptors were compared to human retina as opposed to iso-
lated human photoreceptors. More remains to be understood
about splicing in the retina since neighboring cell types, epige-
netic states, and/or developmental timing may play a role in
mediating optimal photoreceptor splicing. Conditional knockout
of Msi1 in the adult retina will help clarify these results, as will
single-cell sequencing of human retinal organoids.

ASCOT is part of a larger effort to make gene expression and
alternative splicing data more accessible to the general
researcher7,8. By reducing the initial barriers to data analysis, we
hope to accelerate cross-disciplinary work and foster unexpected
discoveries.

Methods
ASCOT data tables, software, and interactive browser are available at http://ascot.
cs.jhu.edu.

Publications used as data sources and bigWig visualization on the UCSC
Genome Browser. All RNA-Seq data used for this study was obtained from var-
ious publication as documented on the ASCOT web resource (http://ascot.cs.jhu.
edu/ds/ds_list.html). To visualize individual data sets, bigWigs were generated
from aligned bam files and compiled as UCSC TrackHubs. Instructions for
visualizing this data is linked on the ASCOT web resource (http://ascot.cs.jhu.edu/
ucsctracks.html).

ASCOT splicing analysis methodology and software. A detailed description of
ASCOT’s splicing analysis methodology is available in Supplementary Fig. 1.
Briefly, ASCOT uses an exon-centric approach to consider only the local regions of
a splice graph and analyzes these elements independently from one another. We
focus on four binary splicing decisions: cassette exons, alternative splice site exon
groups that share the same exclusion junction, linked exons, and mutually exclu-
sive pairs of exons. Our method for splicing analysis relies on evidence from RNA-
Seq split-read alignments (i.e. splice junctions), as opposed to coverage. By
grouping splice junctions based on shared start or end coordinates, closed loops
can be identified where we can start from any coordinate and trace a path through
an alternating series of exons and introns that leads back to original starting
coordinate. For binary splicing events, there are will be two independent loops that
share the same exclusion junction conditions. All scripts used to generate ASCOT
are available on a GitHub repository at https://github.com/jpling/ascot.

HepG2 cell culture, transfection, and FACS isolation. HepG2 cells (ATCC, HB-
8065) were cultured in Eagle’s Minimum Essential Medium (Quality Biological,
112-018-101CS) supplemented with 1x GlutaMAX (ThermoFisher Scientific,
35050061), 10% FBS (Corning, 35-010-CV) and 1% Penicillin-Streptomycin
(ThermoFisher Scientific, 15070063). siRNA targeting PTBP1 (Sigma,
SASI_Hs01_00216644) or eGFP as negative control (ThermoFisher Scientific,
AM4626) were transfected using Lipofectamine 3000 (Thermo Fisher Scientific,

L3000-008) following the manufacturer’s protocol. For overexpression of MSI1 and
PCBP2, Ultimate ORF expression clones from ThermoFisher Scientific (MSI1 -
IOH41182, PCBP2 - IOH4487) were cloned into pCAGIG (Addgene, 11159) and
again transfected using Lipofectamine 3000. For experiments involving a combi-
nation of plasmid overexpression and siRNA knockdown, plasmids were first
transfected at 0 h, siRNA were transfected at 24 h, and cells were processed two
days later at 72 h. For FACS isolation, cells were dissociated using TrypLE
(ThermoFisher Scientific, 12604013) to form a single-cell suspension and sorted
by GFP fluorescence on a BD FACSCalibur in the JHMI Ross Flow Cytometry
Core Facility.

RNA extraction, library preparation, and RNA sequencing. RNA was extracted
from cell culture samples using the Monarch Total RNA Miniprep Kit (New
England BioLabs, T2010S). Total RNA for RNA-Seq was then processed using the
TruSeq Stranded Total RNA Library Prep Kit (Illumina) to construct RNA-Seq
libraries. Sample libraries were then sequenced on an Illumina NextSeq. Data was
de-multiplexed and converted into fastq files. Fastq files were then processed by the
Rail-RNA spliced alignment program and incorporated into a Snaptron
compilation.

RT-PCR primers used for novel exon validation:
Kctd5-forward: CTCCATACGGCACAACCAGT, Kctd5-reverse: GTAGCACC

AAGGACCCTGTC, Flna-forward: TCGTAGCCCCTACACTGTCA, Flna-reverse:
TTACACGCTCCTCACCCTTG, Flnb-forward: CCCATGTGGTCAAGGTCTCC,
Flnb-reverse: GTTACACCAAGCTCTCCGCT, Itgb1-forward: GGCGTCTGTGC
AGAGCATAA, Itgb1-reverse: CAGTTGTCACGGCACTCTTG, Ywhae-forward:
ACAGCCTCGTGGCTTACAAA, Ywhae-reverse: ACATCCTGCAGCGCTTCT
TT, Vcl-forward: TCTCCCCCATGGTGATGGAT, Vcl-reverse: TGAATAAGTGC
CCGCTTGGT, Farp2-forward: GTGTCACAGGAGCCAGTCAT, Farp2-reverse:
TCCTTTTCTAGCCGAGTGCTG, Cltc-forward: TGATCCCGAGCGAGTCAA
GA, Cltc-reverse: ACCAGGTCATGGACAAAGTCA, Ptprf-forward: TTGTCAT
CGCCATCCTCCTG, Ptprf-reverse: TCCTTCAGCCCGATTGACTG, Ank3-
forward: CGAGAACGACACGAAGGGAA, Ank3-reverse: GGCAACGTGTAA
GGGAGTGA, Ppp6r3-forward: GCGGCATGAAGGAAACACTC, Ppp6r3-
reverse: TGCATCTTTGCAAGCAGCAT. Large differences in RT-PCR product
sizes were resolved on 2% agarose gels. To resolve small differences in RT-PCR
product sizes (<30 bp), an Agilent Fragment Analyzer was used instead.

Ex vivo mouse retina electroporation. All experimental procedures were pre-
approved by the Institutional Animal Care and Use Committee of the Johns
Hopkins University School of Medicine. For ex vivo electroporation experiments,
postnatal day (P)2 to P4 mouse retinas were dissected into DMEM/F12 with 10%
FBS and electroporated with 100 µg total plasmid in 100 µl volume using a BTX
ECM 830 Generator. Electroporation was performed using six square pulses of
50 volts and 50 milliseconds duration with a 950 milliseconds interval between
pulses. Retinas were then cultured on 0.2 µm Whatman Nucleopore Track-Etched
Membranes (MilliporeSigma, WHA110406). At P14, electroporated retinas (8–16
per condition) were then dissociated into single-cell suspension using the Wor-
thington Papain Dissociation System (Worthington, LK003150) and GFP-
positive cells were isolated with FACS. For shRNA knockdown, we used pre-
validated constructs from The RNAi Consortium to knockdown Msi1
(TRCN0000098550), Msi2 (TRCN0000071974), and Pcbp2 (TRCN0000120931)
and control shRNA (MilliporeSigma, SHC005). Electroporated shRNA plasmids
were mixed with the pCAGIG plasmid (Addgene, 11159) at a ratio of 3:1 by
weight (shRNA:pCAGIG) to label electroporated cells with GFP. Dominant
negative constructs were generated using an N-terminal truncated
PCBP2 sequence (ΔKH1-PCBP2, aa125–365) and a C-terminal truncated
MSI1 sequence (aa1-199). Sequences were cloned into pCAGIG. Empty pCAGIG
vector was used as a second control.

Fig. 4 Overexpression of MSI1 and PCBP2 in HepG2 cells activates rod-specific exons. We analyzed human ENCODE shRNA-Seq data sets31,32 to test
whether knockdown of constitutive splicing factors activates rod-specific exons. We also sought to test whether overexpression of MSI1 and PCBP2
activates rod-specific exons in the liver cancer HepG2 cell line (used by the ENCODE consortium). a Each row represents alternative or cryptic exons.
Columns represent RNA-Seq data sets, grouped into three categories: 1. HepG2 control and overexpression data sets generated in our lab, 2. HepG2
shRNA-Seq data sets generated by the ENCODE consortium (only a subset of the full data representing well known splicing factors, full database of all
shRNA-Seq data sets is available at http://ascot.cs.jhu.edu/data), 3. Various GTEx tissues30 and peripheral retina49 as reference data (retina, brain, and
skeletal muscle are highlighted in red). No HepG2 shRNA knockdown data sets are capable of activating rod-specific exons but overexpression of MSI1
followed by FACS isolation of the top 1% expressing cells can successfully activate rod-specific exons. Unexpectedly, robust MSI1 overexpression can also
activate neuronal- and muscle-enriched exons. These patterns can also be modestly detected in the PTBP1 shRNA knockdown ENCODE data set, but MSI1
expression alone induces a greater level of activation. Furthermore, we overexpressed MSI1 with PTBP1 siRNA and found that this combination appeared to
act synergistically in activating retina/brain/muscle exons and led to a general increase in rod-specific exon incorporation (Supplementary Fig. 8).
Interestingly, we also find that MSI1 overexpression can activate a set of cryptic exons that are not found in any other human tissue (b) Motif analysis of
intronic sequences (±1000 bp from 5′ and 3′SS) and exonic sequences (±50 bp from 5′ and 3′SS) reveals that UAGmotifs are enriched in a 200 bp intronic
window proximal to the 5′SS. UAG motifs are the consensus binding site for MSI165,67,68. Repetitive CU/UC elements, the binding site for PTBP1, can also
be found upstream of most rod-specific exons (Supplementary Fig. 9).
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Generation of Snaptron compilations. Raw RNA-Seq fastq reads from all the
input accessions were first analyzed using Rail-RNA, a cloud-enabled spliced
alignment program that can analyze many samples at once5,6. Rail-RNA outputs a
few summaries for each run accession, including a table of splice-junction evidence.
In this table, each row is a splice junction and each column is an individual run

accession. The elements of the table give the number of times a spliced alignment
from an individual (column) spanned a junction (row). These summaries are then
composed and indexed using Tabix and SQLite, and all the associated metadata for
the run accessions are indexed using Lucene, to form a Snaptron compilation. A
Snaptron compilation can be queried via command line or via RESTful API queries.
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Fig. 5 Visualization and pathway analysis of rod-specific exons and electroporation of mouse retina. a UCSC visualization of rod-specific exons, both
alternative (BSG, IMPDH1, MAN2A2, PPP3CC, TNRC6A) and cryptic (RDX, GDAP1, MTRR). Overexpression of PCBP2 activates the rod-specific exon in BSG,
independent of PTBP1 knockdown. By contrast, MSI1 overexpression in combination with PTBP1 knockdown activates both rod-specific exons (IMPDH1,
MAN2A2, PPP3CC) and pan-neuronal exons (TNRC6A). High levels of MSI1 overexpression can also activate cryptic exons (RDX, GDAP1) that are not found
elsewhere in the body. However, some of the cryptic exons activated by MSI1 overexpression are not cryptic and can be found in photoreceptors (MTRR).
b Electroporation of Msi1 shRNA in mouse retina abolishes nearly all rod-specific splicing (Atp1b2, Efr3a, Cask). However, some rod-specific exons (Doc2b)
remain unaffected (Supplementary Fig. 11). c Model for the regulation of photoreceptor-specific splicing. Increased expression of MSI1 and downregulation
of PTBP1 act synergistically to activate rod-specific exons, while increased PCBP2 expression can activate the rod-specific exon in BSG.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14020-5

10 NATURE COMMUNICATIONS |          (2020) 11:137 | https://doi.org/10.1038/s41467-019-14020-5 | www.nature.com/naturecommunications



Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNA-Seq data sets has been deposited in the NCBI Sequence Read Archive. The
accession numbers for the sequencing data in this paper are SRP219036 (HepG2
overexpression) and SRP218930 (retina electroporation).

Code availability
Gene expression summaries, alternative splicing summaries, and visualization tools are
available at the ASCOT online resource: http://ascot.cs.jhu.edu. Source code and software
are available under the following github repository: https://github.com/jpling/ascot.
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