2,010 research outputs found

    Interpretation of the vibrational spectra of glassy polymers using coarse-grained simulations

    Get PDF
    The structure and vibrational density of states (VDOS) of polymer glasses are investigated using numerical simulations based on the classical Kremer-Grest bead-spring model. We focus on the roles of chain length and bending stiffness, the latter being set by imposing three-body angular potentials along chain backbones. Upon increasing the chain length and bending stiffness, structural reorganisation leads to volumetric expansion of the material and build-up of internal stresses. The VDOS has two dominant bands: a low frequency one corresponding to inter- and intra-chain non-bonding interactions and a high frequency one corresponding principally to vibrations of bonded beads that constitute skeletal chain backbones. Upon increasing the steepness of the angular potential, vibrational modes associated with chain bending gradually move from the low-frequency to the high-frequency band. This redistribution of modes is reflected in a reduction of the so-called Boson peak upon increasing chain stiffness. Remarkably, the finer structure and the peaks of the high-frequency band, and their variations with stiffness, can, for short chains, be explained using an analytical solution derived for a model triatomic molecule. For longer chains, the qualitative evolution of the VDOS with chain stiffness is similar, although the distinct peaks observed for short chains become increasingly smoothed-out. Our findings can be used to guide a systematic approach to interpretation of Brillouin and Raman scattering spectra of glassy polymers in future work, with applications in polymer processing diagnostics.Comment: To appear in Macromolecule

    Arbitrary-order Hilbert spectral analysis and intermittency in solar wind density fluctuations

    Get PDF
    The properties of inertial and kinetic range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size, and to the presence of strong non-stationary behavior and large-scale structures, the classical structure function analysis fails to detect power law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties, and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral break scale. These results provide important constraints on models of kinetic range turbulence in the solar wind

    The Hierarchy of Hyperlogics

    Get PDF
    Hyperproperties, which generalize trace properties by relating multiple traces, are widely studied in information-flow security. Recently, a number of logics for hyperproperties have been proposed, and there is a need to understand their decidability and relative expressiveness. The new logics have been obtained from standard logics with two principal extensions: temporal logics, like LTL and CTL^*, have been generalized to hyperproperties by adding variables for traces or paths. First-order and second-order logics, like monadic first-order logic of order and MSO, have been extended with the equal-level predicate. We study the impact of the two extensions across the spectrum of linear-time and branching-time logics, in particular for logics with quantification over propositions. The resulting hierarchy of hyperlogics differs significantly from the classical hierarchy, suggesting that the equal-level predicate adds more expressiveness than trace and path variables. Within the hierarchy of hyperlogics, we identify new boundaries on the decidability of the satisfiability problem. Specifically, we show that while HyperQPTL and HyperCTL^* are both undecidable in general, formulas within their \exists^*\forall^* fragments are decidable.Comment: Originally published at LICS 201

    Dynamics of nonlinear cross-equatorial flow in the deep ocean

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1996The transformation of potential vorticity within and stability of nonlinear deep western boundary currents in an idealized tropical ocean are studied using a shallowwater model. Observational evidence indicates that the potential vorticity of fluid parcels in deep western boundary currents must change sign as they cross the equator, but this evidence is otherwise unable to clarify the process. A series of numerical experiments investigate this transformation in a rectangular basin straddling the equator. A mass source located in the northwestern corner feeds fluid into the domain where it is constrained to cross the equator to reach a distributed mass sink. Dissipation is included as momentum diffusion. The Reynolds number, defined as the ratio of the mass source per unit depth to the viscosity, determines the nature of the flow, and a critical value, Rec, divides its possible behavior into two regimes. For Re < Rec, the flow is laminar and well described by linear theory. For Re just above the critical value, the flow is time-dependent, with cyclonic eddies forming in the western boundary current near the equator. For still larger Reynolds number, eddies of both signs emerge and form a complicated, interacting network that extends into the basin several deformation radii from the western boundary, as well as north and south of the equator. The eddy field is established as the mechanism for potential vorticity transformation in nonlinear cross-equatorial flow. The analysis of vorticity fluxes follows from the flux-conservative form of the absolute vorticity equation. It is shown that the zonally integrated meridional flux of vorticity across the equator using no slip boundary conditions is virtually zero even in the strongly nonlinear limit suggesting that the eddies are extremely efficient vorticity transfer agents. A decomposition of the vorticity fluxes into components due to mean advection, eddy transport, and friction, reveals the growth with Reynolds number of a turbulent boundary layer that exchanges vorticity between the inertial portion of the boundary current and a frictional sub-layer where modification is straightforward. A linear stability analysis of the shallow-water system in the tropical ocean examines the initial formation of the eddy field. The formulation assumes that the basic state is purely meridional and on a local f-plane. Realistic western boundary current profiles undergo a horizontal shear instability that is partially stabilized by viscosity. Calculations at several latitudes indicate that the instability is enhanced in the tropics where the internal deformation radius is a maximum. The linear stability analysis predicts a length scale of the disturbance, a location for its origin, and a critical Reynolds number that agree well with numerical results.Financial support for this research was provided by NSF grant number OCE- 9115915 and ONR ASSERT grant number N00014-94-1-0844

    Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells.

    Get PDF
    Affinity and dose of T cell receptor (TCR) interaction with antigens govern the magnitude of CD4+ T cell responses, but questions remain regarding the quantitative translation of TCR engagement into downstream signals. We find that while the response of mouse CD4+ T cells to antigenic stimulation is bimodal, activated cells exhibit analog responses proportional to signal strength. Gene expression output reflects TCR signal strength, providing a signature of T cell activation. Expression changes rely on a pre-established enhancer landscape and quantitative acetylation at AP-1 binding sites. Finally, we show that graded expression of activation genes depends on ERK pathway activation, suggesting that an ERK-AP-1 axis plays an important role in translating TCR signal strength into proportional activation of enhancers and genes essential for T cell function

    Synthesis and Recognition Properties of Higher Order Tetrathiafulvalene (Ttf) Calix N Pyrroles (N=4-6)

    Get PDF
    Two new benzoTTF-annulated calix[n]pyrroles (n = 5 and 6) were synthesized via a one-step acid catalyzed condensation reaction and fully characterized via single crystallographic analyses. As compared to the known tetra-TTF annulated calix[4]pyrrole, which is also produced under the conditions of the condensation reaction, the expanded calix[n]pyrroles (n = 5 and 6) are characterized by a larger cavity size and a higher number of TTF units (albeit the same empirical formula). Analysis of the binding isotherms obtained from UV-Vis spectroscopic titrations carried out in CHCl3 in the presence of both anionic (Cl-, Br-, I-, CH3COO-, H2PO4-, and HSO4-) and neutral (1,3,5-trinitrobenzene (TNB) and 2,4,6-trinitrotoluene (TNT)) substrates revealed that as a general rule the calix[6]pyrrole derivative proved to be the most efficient molecular receptor for anions, while the calix[4]pyrrole congener proves most effective for the recognition of TNB and TNT. These findings are rationalized in terms of the number of electron rich TTF subunits and NH hydrogen bond donor groups within the series, as well as an ability to adopt conformations suitable for substrate recognition, and are supported by solid state structural analyses.National Science Foundation CHE 1057904, 0741973Robert A. Welch Foundation F-1018Danish Natural Science Research Council (FNU) 272-08-0047, 11-106744WCU (World Class University) program of Korea R32-2010-10217-0Villum FoundationChemistr

    Factors related to good asthma control using different medical adherence scales in Latvian asthma patients : An observational study

    Get PDF
    Publisher Copyright: © 2017 The Author(s). Copyright: Copyright 2018 Elsevier B.V., All rights reserved.One of the main challenges in asthma control is adherence to pharmaceutical treatment. The aim of this study was to test the association between adherence to asthma medication, control and medical beliefs, cognitive and emotional perceptions using three different validated questionnaires. Beliefs about asthma medicine, cognitive and emotional factors were determined in a cross-sectional survey of patients attending outpatient pulmonologist practices in Latvia (n = 352). The validated Beliefs about Medicines Questionnaire and the Brief Illness Perception Questionnaire were used. Adherence to asthma medication was assessed using the Morisky Medication Adherence Scale and two different versions of the Medication Adherence Reporting Scale. Several questions about necessity or concerns related to pharmaceutical treatment were able to predict poor adherence according to the Morisky scale. If the patient felt that without the asthma medication his life would be impossible, his risk to have poor treatment adherence was 46% reduced (odds ratio 0.54; 95% confidence interval 0.33-0.89). Furthermore, asthma patients who were convinced that their health depends on the asthma treatment were less likely to have poor treatment adherence (odds ratio 0.56: 95% confidence interval 0.32-0.97). In case the patient was concerned by the need to constantly use asthma medication or sometimes concerned by long-term effects of asthma medication the odds of poor treatment adherence were 1.96 (95% confidence interval 1.19-3.24) and 2.43 (95% confidence interval 1.45-4.08), respectively. In conclusion, medication beliefs, particularly concerns and necessity of asthma treatment were associated with poor treatment adherence when assessed with the Morisky or 5-item Medication Adherence Reporting Scale.publishersversionPeer reviewe

    Congressional gridlock helps to make income inequality worse

    Get PDF
    Last December, President Obama warned of ‘dangerous and growing inequality’ in America, reflecting growing concerns that inequality is increasing, especially in relation to other countries. Peter K. Enns, Nathan J. Kelly, Jana Morgan, Thomas Volscho and Christopher Witko investigate the role of what they argue is a major contributing factor to rising inequality: the tendency for the current political and economic conditions to maintain the policy status quo. They argue that the increasing political polarization that makes it harder for Congress to pass laws in turn contributes to rising inequality, especially when inequality is already growing rapidly
    corecore