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A B S T R A C T

As human co-exposure to natural toxins through food and water is inevitable, risk assessments to safeguard
health are necessary. Aflatoxin B1 and fumonisin B1, frequent co-contaminants of maize and microcystin-LR,
produced in freshwater by cyanobacteria are all naturally occurring potent toxins that threaten human health.
Populations in the poorest regions of the world may suffer repeated simultaneous exposure to these con-
taminants.

Using High Content Analysis, multiple cytotoxicity endpoints were measured for the individual toxins and
mixtures in various cell lines.

Results highlighted that significant cytotoxic effects were observed for aflatoxin B1 in all cell lines while no
cytotoxic effects were observed for fumonisin B1 or microcystin-LR. Aflatoxin B1/microcystin-LR was cytotoxic
in the order HepG2 > Caco-2 > MDBK. Fumonisin B1/microcystin-LR affected MDBK cells. The ternary mix-
ture was cytotoxic to all cell lines. Most combinations were additive, however antagonism was observed for
binary and ternary mixtures in HepG2 and MDBK cell lines at low and high concentrations. Synergy was ob-
served in all cell lines, including at low concentrations.

The combination of these natural toxins may pose a significant risk to populations in less developed countries.
Furthermore, the study highlights the complexity around trying to regulate for human exposure to multiple
contaminants.

1. Introduction

Monitoring of contaminants in water and foods has provided a huge
body of evidence that humans and other organisms are exposed to
complex mixtures of chemicals/natural toxins rather than to one par-
ticular compound (Altenburger et al., 2013). Current toxicological risk
assessments do not adequately evaluate the impact of concomitant ex-
posure to a number of chemical hazards (Maffini and Neltner, 2015).
Traditionally these assessments have been performed for single

contaminants rather than evaluating multiple compounds due to the
complexities involved and the available techniques (Seidle and
Stephens, 2009). So whilst the toxicity of a single contaminant on a
variety of organs has been examined, simultaneous exposures to other
hazards that may affect the same organs or systems in the body will not
have been explored (Maffini and Neltner, 2015). As a result, vital data
namely, additive, synergistic and antagonistic effects is not available for
consideration by the relevant authorities (Wilson et al., 2016).

Of interest are combinations of biotoxins that occur naturally in the
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field, on crops and in freshwater lakes, rivers and ponds that may
present a considerable risk to human health particularly in developing
countries. These include mycotoxins, secondary metabolites of fila-
mentous fungi that are frequent contaminants of cereal crops, and mi-
crocystins, cyanobacterial toxins that populate eutrophic freshwater
bodies. One of the most important staple cereal crops in Africa, Latin
America and rural China (Ranum et al., 2014; Gong et al., 2009) is
maize and frequent co-contamination with aflatoxin B1 (AFB1) and fu-
monisin B1 (FB1) have been well reported in these regions (Warth et al.,
2012; Kimanya et al., 2014; Adetuniji et al., 2014; Murashiki et al.,
2017; Sun et al., 2011; Wang et al., 2013; Liu et al., 2016; Ono et al.,
2001; Moreno et al., 2009; Torres et al., 2015; Oliveira et al., 2017).
The freshwater toxin microcystin-LR (MC-LR), has also been frequently
found in lakes and rivers in these regions (Sitoki et al., 2012;
Mankiewicz-Boczek et al., 2015; Mbonde et al., 2015; Ueno et al., 1996;
Zhang et al., 2009; Chen et al., 2009; Li et al., 2011; Vasconcelos et al.,
2010; Ruiz et al., 2013; Romero-Oliva et al., 2014; Gonzalez-Piana
et al., 2017) and often contaminates drinking water supplies (Codd
et al., 1999; Falconer, 1999, 2005). The toxicological properties of
these compounds are well documented. AFB1 was classified as a Group
1A human carcinogen by the International Agency for Research on
Cancer (IARC) in 1993 (World Health Organization International
Agency for Research on Cancer, 1993), while FB1 and MC-LR have been
characterised as being possibly carcinogenic to humans (Group 2B)
(World Health Organization International Agency for Research on
Cancer, 1993; World Health Organization International Agency for
Research on Cancer, 2010). Additionally, the World Health Organisa-
tion (WHO) introduced a drinking water guideline of 1 μg/l for MC-LR
(WHO, 2003).

Given the likelihood of AFB1, FB1 and MC-LR co-exposure, the risks
associated with this need to be elucidated to ensure that public health is
protected. The aim of this study was to assess the cytotoxic and inter-
active effects of these three natural toxins, at realistic concentrations.
These have been determined from biomarker exposure surveys for AFB1

and FB1 described in the literature in addition to reported MC-LR
concentrations in serum from populations exposed to this biotoxin or
consumption estimates (Table 1). To this end, using High Content
Analysis, multiple cytotoxicity endpoints were measured for the in-
dividual toxins as well as mixtures in human hepatocellular carcinoma
cells (HepG2), Madin-Darby bovine kidney epithelial cells (MDBK) and
human epithelial colorectal adenocarcinoma cells (Caco-2). These cell
lines replicate the organs/systems of the body that the toxins are known
to affect. Cell number (CN), nuclear area (NA), nuclear intensity (NI),
mitochondrial mass (MM) and mitochondrial membrane potential
(MMP) were evaluated. The endpoints selected are markers of cell

health and encompass the features of cellular metabolic functions
(O'Brien, 2014), therefore providing valuable information for the risk
assessors.

2. Materials and methods

2.1. Chemicals

Aflatoxin B1 (AFB1) (99.5 ± 0.5% pure) and fumonisin B1 (FB1)
(97.6 ± 2.4% pure) were purchased from Romer Labs Diagnostic
GmbH (Tulln, Austria) and microcystin-LR (MC-LR) (≥95% pure) was
provided by Enzo Life Sciences (UK) Ltd, Exeter, United Kingdom.
Phosphate buffered saline (PBS), formalin solution, dimethyl sulfoxide
(DMSO) (≥99.7% pure) and methanol (99% pure) were obtained from
Sigma-Aldrich (Poole, UK). Minimum essential media (MEM),
minimum essential media non-essential amino acids solution (NEAA),
Dulbecco's modified eagle medium containing phenol red (DMEM),
foetal bovine serum, L-glutamine, sodium pyruvate, penicillin strepto-
mycin, TrypLE™ Express, valinomycin, Hoechst 33342 solution,
MitoTracker® Orange CMTMRos, trypan blue and Countess™ cell
counting chamber slides were purchased from Life Technologies
(Paisley, Scotland). All other reagents/materials were standard la-
boratory grade.

2.2. Toxin mixtures

Stock solutions of AFB1, FB1, and MC-LR were prepared in methanol
(100%) and working solutions were diluted from the stocks in cell
culture medium on the day of use. The resultant methanol concentra-
tion was 0.5% (v/v). For AFB1, the working concentrations ranged from
0.1 ng/ml to 500 ng/ml (0.32 nM–1.6 μM), for FB1, 200 ng/ml to
8000 ng/ml (0.28 μM–11.1 μM) and for MC-LR the concentrations
ranged from 0.2 ng/ml to 250 ng/ml (0.2 nM–250 nM). In addition,
binary mixtures of AFB1 and MC-LR, FB1 and MC-LR and ternary mix-
tures of AFB1, FB1 and MC-LR were prepared in culture medium using
the same concentration ranges detailed above. The experimental con-
centrations selected were based on estimated exposure data derived
from measuring urinary biomarkers in the case of AFB1 and FB1 and
serum concentrations or consumption data for MC-LR reported in the
literature. Table 2 relates the in vitro concentrations used to in vivo
concentrations in humans to enable comparison with human exposure
data outlined in Table 1.

Table 1
Estimated exposure levels of populations to aflatoxins, fumonisins and microcystin-LR using biomarkers.

Country Biomarker Concentration (μg/L) Estimated exposure (μg/kg/bw/d) Reference

Cameroon Urinary AFM1 1.38 1.15 Abia et al., 2013
Nigeria Urinary AFM1 1.5 2.5 Ezekiel et al., 2014
Brazil Urinary AFM1 0.0069 0.0018 Jager et al., 2014

Urinary AFM1 0.0042 0.0014
China – Fushui County Urinary AFM1 3.2 3.68 Zhu et al., 1987
China - Shanghai Urinary AFM1 5.2 4.33 Qian et al., 1994

Cameroon Urinary FB1 14.8 123.3 Abia et al., 2013
Nigeria Urinary FB1 12.8 76 Ezekiel et al., 2014
China – Huaian County Urinary FB1 13.63 7.67 Xu et al., 2010
China – Fusui County Urinary FB1 0.72 2.12
Mexico Urinary FB1 0.147 0.368 Gong et al., 2008
South Africa Urinary FB1 0.225 8.14 Van der Westhuizen et al., 2011

China – Anhui Province MC-LR (serum) 0.39 0.065 Chen et al., 2009
China- Three Gorges Reservoir Estimated from food and water consumption / 0.203 Li et al., 2011
Brazil, Caruarua MC-LR (serum) 133 11.1 Pouria et al., 1998

a Acute poisoning of dialysis patients during haemodialysis.
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2.3. Cell culture and treatment

Human hepatocellular carcinoma (HepG2) cells, human epithelial
colorectal adenocarcinoma (Caco-2) cells and Madin-Darby bovine
kidney epithelial (MDBK) cells were routinely cultured in 75 cm2 cell
culture flasks (Nunc, Roskilde, Denmark) in a 5% carbon dioxide at-
mosphere at 37 °C and 95% relative humidity. MEM media supple-
mented with 10% foetal bovine serum, 1% penicillin-streptomycin,
1 mM sodium pyruvate and 2mM L-glutamine was used to maintain
HepG2 and Caco-2 cell lines while MEM media containing 10% foetal
bovine serum and 1% NEAA was selected for MDBK cells. TrypLE™
Express was used to dissociate the adherent cells from the flask prior to
staining with trypan blue for cell counting and viability check using a
Countess® automated cell counter.

Cells were seeded into Corning® BioCoat™ Collagen I, 96 well, clear
flat bottom microtitre plates (Corning Life Sciences, New York, US).
Seeding densities were 1× 105 cells/ml, 8× 104 cells/ml and
4×104 cells/ml for HepG2, Caco-2 and MDBK cells, respectively.
These densities have been established and are standard protocol within
our laboratory. They are important to ensure high quality, reproducible
assay results. If the seeding densities are too low, the greater the re-
sponse to the test compounds, whereas high cell numbers tend to be less
responsive to the test compounds (Riss and Moravec, 2004). After 24 h,
the cells were exposed to the single, binary and ternary mixtures of the
test compounds described above for 48 h (five concentrations were
tested for each). Negative controls of 0.5% (v/v) methanol/media and
0.1% (v/v) DMSO/media and a positive control, valinomycin prepared
in DMSO (100%) and diluted in media, (final concentration of 60 μM in
0.1% (v/v) DMSO/media) were included in the study. All controls and
toxin compounds/mixtures were tested in triplicate.

2.4. Cytotoxicity assessment using High Content Analysis

Two fluorescent probes were used to assess any subtle or overt
changes in cell health. MitoTracker® Orange CMTMRos, enabled eva-
luation of mitochondrial function such as changes in mitochondrial
mass (MM) or in mitochondrial membrane potential (MMP) and
Hoechst nuclear stain was used to label the cell DNA, allowing mea-
surement of features such as cell number (CN), nuclear area (NA) and
nuclear intensity (NI). A stock solution of MitoTracker® Orange
CMTMRos, live cell stain was prepared by adding 117 μl DMSO to 50 μg
dye (1mM solution). The stock was diluted 1:100 with DMEM media

(according to the manufacturer's instructions as the dye is susceptible to
potential oxidases in serum and so complete media, such as MEM, may
not be used) to an intermediate concentration of 10 μM and a further
1:100 dilution in DMEM performed to give a final working solution of
100 nM. Hoechst stock solution (20mM) was diluted to a working so-
lution concentration of 2 μM in PBS prior to use.

Following 48 h of exposure under culture conditions, the media and
test mixtures were removed carefully and the live cell stain,
MitoTracker® Orange CMTMRos (50 μl) added to each well for 30m at
37 °C, protected from the light. The mitochondrial fluorescent dye was
removed and the cells were fixed with 10% formalin solution (150 μl)
for 15m at room temperature and protected from light. The fixing so-
lution was gently removed and the cells washed with PBS (200 μl) after
which the nuclear (Hoechst) stain (100 μl) was added and incubated for
20m at room temperature and protected from the light. Finally, the
cells were washed with PBS as before and fresh PBS (200 μl) added to
the wells prior to sealing the plate with black vinyl film to protect the
photosensitive samples until reading. Samples were evaluated on
CellInsight™ NXT High Content Screening (HCS) platform (Thermo
Fisher Scientific, UK). Using automated fluorescent microscopy and
advance imaging tools, the instrument allows the quantitative analysis
of multiple parameters for single cells (O'Brien et al., 2006). For each
plate, data was captured at 10× objective magnification and five field
of view images were acquired for each parameter. Excitation and
emission wavelengths for Hoechst nuclear stain and MitoTracker® Or-
ange CMTMRos were Ex/Em 361/497 nm and Ex/Em 554/576 nm,
respectively.

2.5. Statistical analysis

Exposure analyses were performed in triplicate on three in-
dependent occasions and the results expressed as the mean percentage
of the solvent control ± standard error of the mean (SEM) of the ex-
posures. All data was analysed using Microsoft Excel and GraphPad
Prism 5.01 (GraphPad Software Inc., San Diego, California). Significant
differences at the 95% confidence level between the control and treated
groups were determined by one-way ANOVA and Dunnett's multiple
comparison assessment. Significant cytotoxic injury is denoted by
p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***).

2.6. Determination of the interactive effects of the toxins

Several experimental designs exist for the study of drug/con-
taminant interactions (Smith et al., 2016). The most commonly applied
approach is that detailed by Weber et al. (2005) and compares theo-
retical expected values derived from single contaminant exposure stu-
dies with the observed values derived from co-exposure experiments.
The other widely used technique is the Chou, 2006 method that uses
isobologram analyses and quantification of the antagonism or synergy
by calculation of a combination index (Le et al., 2018). In this study,
comparison between the expected and observed measurements was
performed to indicate if the interactions of the binary and ternary
mixtures of toxins were additive, antagonistic or synergistic. The ex-
pected values were calculated as described by Weber et al. (2005),
whereby the mean (%) of exposure to one compound was added to the
mean value (%) after exposure to the second and then the third com-
pound. To illustrate; expected values after exposure to a binary mixture
were calculated as follows: mean (expected for AFB1 + FB1) = (mean
(AFB1) + mean (FB1)) – 100% or in the case of exposure to a ternary
mixture: mean (AFB1 + FB1 + MC-LR) = (mean
(AFB1 + FB1) + mean (MC-LR)) −100%. The expected SEM for binary
combinations was calculated as follows: SEM (expected for AFB1 +MC-
LR) = [(SEM for AFB1)2 + (SEM MC-LR)2]1/2 and for the ternary
mixture; SEM (expected for AFB1 + FB1 + MC-LR) = [(SEM for
AFB1 + FB1)2 + (SEM for MC-LR)2]1/2. To determine significant dif-
ferences between the expected and observed measurements, an

Table 2
Relating the in vitro concentrations used to in vivo concentrations in humans.

Toxin Concentration
(μg/L)

Concentration
(nM)

Concentration in
well (μg/200 μl)

Toxin
(μg/kg/
bw/d)a

Aflatoxin B1 500 1600 100 1.6
100 320 20 0.33
10 32 2 0.033
2 6.4 0.4 0.006
0.1 0.32 0.02 0.0003

Fumonisin B1 8000 11100 1600 26.6
4000 5500 800 13.3
2000 2800 400 6.67
1000 1400 200 3.33
200 280 40 0.67

Microcystin-LR 250 250 50 0.83
50 50 10 0.17
5 5 1 0.017
1b 1 0.2 0.003
0.2 0.2 0.04 0.0006

a Based on the average weight of an adult being 60 kg.
b WHO limit for MC-LR in drinking water.
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unpaired t-test was applied and results considered significantly dif-
ferent if p≤ 0.05. The effects of the toxin mixtures were considered
additive if the measured cell parameters were not significantly above or
below the expected values. If the measured parameters were sig-
nificantly greater than the expected values for the endpoints CN, NI and
MMP and significantly below the expected values for NA and MM this
signified antagonism. Finally, synergistic effects were indicated if the
measured cell parameters were significantly less than the expected
values for CN, NI and MMP and significantly greater than the expected
values for the endpoints NA and MM.

3. Results

3.1. Cytotoxicity of individual toxins

The cytotoxic effects of individual naturally occurring toxins, AFB1,
FB1 and MC-LR on three cell types (HepG2, Caco-2 and MDBK) were
investigated using HCA, allowing the rapid, simultaneous interrogation
of various cellular parameters such as CN, NA, NI, MM and MMP.
Following 48 h of exposure, AFB1 (at the highest concentration tested)
triggered cellular injury in all cell types while no toxicity was observed
for FB1 and MC-LR at the concentrations investigated. Fig. 1 shows
images of HepG2 cells following treatment with the negative and po-
sitive controls and AFB1 at 500 ng/ml. As a result of exposure to
500 ng/ml (1.6 μM) AFB1 in HepG2 cells, CN fell by 17.3% (p≤ 0.001),
NA increased by 17% (p≤ 0.001) and MM increased by 12.3%
(p≤ 0.001). Caco-2 cells showed increases in NA and MM of 10.1%
(p≤ 0.001) and 8.3% (p≤ 0.001), respectively, and in MDBK cells, CN
dropped by 13.5% (p≤ 0.05) while NA increased by 6.6% (p≤ 0.01)
(Fig. 2).

3.2. Cytotoxicity of the binary mixtures AFB1/MC-LR and FB1/MC-LR

The cytotoxic effects of the binary toxin mixtures AFB1/MC-LR and
FB1/MC-LR on the cellular parameters of CN, NA, NI, MM and MMP in
each cell line are shown in Figs. 3 and 4, respectively. Cytotoxicity was
observed for the highest concentrations of each used, that is a mixture
1.6 μM AFB1/250 nM MC-LR, and a mixture of 11.1 μM FB1/250 nM
MC-LR. Three endpoints, CN, NA and MM were significantly altered by
the binary mixture AFB1/MC-LR in the HepG2 cells. Cell numbers
dropped by 11.3% (p≤ 0.05) and NA and MM both showed increases of
8.2% (p≤ 0.01) and 10.6% (p≤ 0.01), respectively. This mixture also
affected MM in Caco-2 cells (an increase of 5.4%, p≤ 0.05) and NA in
MDBK cells where an increase of 3.7% was observed (p≤ 0.01). A
decrease of 14.1% (p≤ 0.05) in CN and an increase of 10.2%
(p≤ 0.001) in NI was detected in MDBK cells following treatment with
FB1/MC-LR. Mitochondrial membrane potential in all cell lines

investigated remained unaltered after treatment with these binary toxin
combinations.

Results of the interactive effects of AFB1/MC-LR and FB1/MC-LR on
these particular cell lines are illustrated in Figs. 5 and 6, respectively. In
HepG2 cells, antagonism was observed after 48 h treatment with all
concentrations of the AFB1/MC-LR mixture for CN. Measured values
were determined to be significantly higher than those expected by
13.9% (p≤ 0.01), 24.6% (p≤ 0.001), 11.5% (p≤ 0.05), 12.1%
(p≤ 0.05) and 8.2% (p≤ 0.05) at increasing toxins concentrations.
Antagonistic effects were also evident for NA measurements using the
highest concentration mixture (1.6 μM AFB1/250 nM MC-LR) in two of
the cell lines where the measured response was less than that expected
by 10.4% (p≤ 0.01) (HepG2) and 6.1% (p≤ 0.001) (MDBK). For NI in
HepG2 cells, synergy was observed for the mixture containing the
highest concentrations of AFB1/MC-LR.

Treatment with a binary combination of FB1/MC-LR demonstrated
antagonism between the toxins at the two lowest concentration mix-
tures used (0.28 μM FB1/0.2 nM MC-LR and 1.4 μM FB1/1 nM MC-LR)
for both CN and NA in HepG2 cells. Significantly higher measured
values of 12.8% (p≤ 0.05) and 13.6% (p≤ 0.01) and lower measured
results of 8.3% (p≤ 0.01) and 7.4% (p≤ 0.05) compared to what was
expected were observed for CN and NA, correspondingly. Antagonism
was also noted for NA endpoint in MDBK cells at the highest con-
centration of the mixture used (11.1 μM FB1/250 nM MC-LR), dis-
playing a difference of 5.0% between the measured and expected values
(p≤ 0.05). Furthermore, synergistic effects were seen at these con-
centrations for MMP in MDBK cells (a difference of 9.4%, p≤ 0.05) and
for NI in Caco-2 cells where a difference of 7.1% (p≤ 0.05) was de-
termined between measured and expected values. The findings for all
other mixtures were considered to be additive effects because the
measured values were not significantly above or below the expected
results.

3.3. Cytotoxicity of the ternary combination of AFB1/FB1/MC-LR

The combination of all three toxins triggered a toxic response at the
highest concentrations tested, namely, 500 ng/ml AFB1, 8000 ng/ml
FB1 and 250 ng/ml MC-LR (1.6 μM, 11.1 μM and 250 nM, respectively)
in various endpoint parameters for HepG2, Caco-2 and MDBK cell lines
(Fig. 7). Four endpoints were significantly affected in HepG2 cells
where a decrease of 13.0% (p≤ 0.05) was observed for CN and for NA,
MM and MMP, increases of 11.3% (p≤ 0.001), 11.3% (p≤ 0.01) and
10.9% (p≤ 0.01), respectively, were observed. When this mixture was
applied to MDBK cells, the results revealed a decrease in CN (11.5%,
p≤ 0.05) and increases in NA (3.8%, p≤ 0.05), NI (6.8%, p≤ 0.05)
and MM (5.0%, p≤ 0.05). The only parameter affected in the Caco-
2 cell line was MM which increased by 6.8% (p≤ 0.01).

Fig. 1. HCA images for HepG2 treated cells showing (a) Negative control (0.5% (v/v) methanol), (b) AFB1 (500 ng/ml) and (c) the positive control (60 μM vali-
nomycin). Images were acquired at 10× objective magnification using Hoechst dye (blue, nuclear stain) and MitoTracker® Orange CMTMRos (orange, mitochondrial
stain). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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The combined effects of the ternary mixtures of AFB1, FB1 and MC-
LR were assessed and are represented in Fig. 8. The most significant
outcomes were exhibited in HepG2 cells where antagonism was evident
at the lower concentration ranges tested for CN and NA. Measured CN
was 10.9% (p≤ 0.05) and 18.7% (p≤ 0.01) greater than the expected
values while for NA, the measured result highlighted a difference of
8.4% (p≤ 0.05) lower than what was expected. In addition, this effect
was observed for NA in MDBK cells (3% difference, p≤ 0.01) at the

highest concentrations of toxins used. A synergistic effect was evident
for a low-level concentration mixture (2 ng/ml AFB1/1000 ng/ml FB1/
1 ng/ml MC-LR) at one endpoint (NI) in HepG2 cells where a lower
measured response of 7.9% was determined (p≤ 0.01). As previously
stated, when no significant differences were observed between the
measured and expected results, the effects were considered to be ad-
ditive.

Fig. 2. Cytotoxic effects of AFB1 after 48 h exposure on various cell lines. Parameters measured included CN, NA, NI, MM and MMP. Graphs show effects on HepG2
cells: (a) cell number (CN), (b) nuclear area (NA), (c) mitochondrial mass (MM), on MDBK cells: (d) cell number (CN) and (e) nuclear area (NA) and on Caco-2 cells:
(f) nuclear area (NA) and (g) mitochondrial mass (MM). Data for each (n=3) is expressed as a percentage of the untreated control ± standard error of the mean
(SEM) of the exposure parameter. Significant cytotoxicity is denoted by p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***). Only endpoints showing adverse effects are
shown.
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4. Discussion

Defining the risks of human co-exposure to multiple contaminants is
a necessary but extremely complex undertaking and cytotoxicity studies
are a useful initial step in determining the potential toxicities of com-
bined test substances. In this investigation, HCA was used to reveal the
toxic effects and the interactions of three naturally occurring toxins on
HepG2, Caco-2 and MDBK cell lines by examining both nuclear (CN,
NA, NI) and mitochondrial (MM, MMP) features. The cells were

exposed to the single toxins AFB1, FB1 and MC-LR, in addition to binary
mixtures of AFB1/MC-LR and FB1/MC-LR and finally ternary mixtures
of all three. The concentrations chosen for the study were selected after
examination of the reported exposure levels of these toxins in the ap-
plicable geographical regions (Table 1).

Cellular responses to these contaminants in various cell lines have
been reported in the literature, and generally the techniques involved
have been single endpoint assays such as MTT (3-(4,5-dimethylthiazole-
2-yl)-2,5-diphenyltetrazolium bromide), NR (Neutral Red) or WST-1,

Fig. 3. Cytotoxic effects of the binary mixture AFB1/MC-LR after 48 h exposure on various cell lines. Parameters measured included CN, NA, NI, MM and MMP.
Graphs show effects on HepG2 cells: (a) cell number (CN), (b) nuclear area (NA), (c) mitochondrial mass (MM) on MDBK cells: (d) nuclear area (NA) and on Caco-
2 cells: (e) mitochondrial mass (MM). Data for each (n=3) is expressed as a percentage of the untreated control ± standard error of the mean (SEM) of the exposure
parameter. Significant cytotoxicity is denoted by p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***). Only endpoints showing adverse effects are shown.
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Fig. 4. Cytotoxic effects of the binary mixture FB1/MC-LR after 48 h exposure on various cell lines. Parameters measured included CN, NA, NI, MM and MMP. Graphs
show effects on MDBK cells: (a) cell number (CN) and (b) nuclear intensity (NI). Data for each (n=3) is expressed as a percentage of the untreated control ±
standard error of the mean (SEM) of the exposure parameter. Significant cytotoxicity is denoted by p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***). Only endpoints
showing adverse effects are shown.

Fig. 5. Interactive cytotoxic effects of the binary mixture AFB1/MC-LR to various endpoints after 48 h exposure to different cell lines. Effects are shown for HepG2
cells: (a) cell number CN, (b) nuclear area (NA), (c) nuclear intensity (NI), and in MDBK cells: (d) nuclear area (NA). Data for each (n=3) is expressed as a
percentage of the untreated control ± standard error of the mean (SEM) for each parameter. Green bars denote the expected values and grey bars the measured
values. Significant antagonistic and synergistic effects are represented by p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***). Only endpoints showing effects are shown.
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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(4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene
disulfonate), amongst others. These methods tend to be less sensitive
and measure lethal toxicities within a few hours, rather than allowing
the treatment of cells with sub-lethal concentrations of compounds of

interest for several days as with HCA (O'Brien et al., 2006). That said,
there are conflicting reports in the literature regarding the comparison
of CN as a measure of cell viability and the MTT assay. One group of
researchers found a high concordance between the two methods

Fig. 6. Interactive cytotoxic effects of
the binary mixture FB1/MC-LR to var-
ious endpoints after 48 h exposure to
different cell lines. Effects are shown
for HepG2 cells: (a) cell number CN, (b)
nuclear area (NA), in MDBK cells: (c)
nuclear area (NA), (d) mitochondrial
membrane potential (MMP) and in
Caco-2 cells: (e) nuclear intensity (NI).
Data for each (n=3) is expressed as a
percentage of the untreated control ±
standard error of the mean (SEM) for
each parameter. Green bars denote the
expected values and grey bars the
measured values. Significant antag-
onistic and synergistic effects are re-
presented by p ≤ 0.05 (*), p ≤ 0.01
(**), p ≤ 0.001 (***). Only endpoints
showing effects are shown. (For inter-
pretation of the references to color in
this figure legend, the reader is referred
to the Web version of this article.)
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(Wilson et al., 2016) while another group found that using HCA, CN
was significantly affected, yet this was not observed in the MTT assay
(Clarke et al., 2015). However, since the MTT assay measures mi-
tochondrial activity, comparing the HCA mitochondrial parameters is
imperative and in this instance it was shown by Wilson et al. (2016)
that the MTT assay was less sensitive at detecting cytotoxicity. Using
HCA, it has been found that in general, the marker/parameter most
significantly affected by a cytotoxic agent is CN followed by NA
(O'Brien, 2014) and in fact CN is still considered to be the most precise
way to determine human hepatotoxicity using in vitro assays (O'Brien
and Edvardsson, 2017). Also very sensitive to toxic compounds and
affected more rapidly than other cellular parameters are mitochondria
(O'Brien et al., 2006). Mitochondrial dysfunction has been associated
with a wide variety of diseases in humans (Pieczenik and Neustadt,
2007), therefore analysis of MM and MMP are valuable cell health in-
dicators. Another important nuclear morphometric feature for mea-
suring cytotoxicity is NI (Cole et al., 2014). There are alternative sen-
sitive cellular endpoint assays that may provide valuable information as
to the effects of individual toxins and indeed on the combined toxicity
of several compounds. These include measuring caspase-3 enzyme ac-
tivity which is the main enzyme involved in apoptosis (Weber et al.,
2005) and the measurement of reactive oxygen species (ROS), which if
excessive, may stimulate cellular damage (Wilson et al., 2016).

4.1. Cytotoxicity of individual toxins

This study has shown that AFB1 (at 1.6 μM/500 ng/ml) induced
cytotoxicity in the order of HepG2>Caco-2>MDBK, as highlighted
by the number of measured endpoints affected and how significant
these changes were when compared with controls. These results concur
with what can be found in the literature. It is well established that the
target organ for AFB1 is the liver and the observed findings highlight
this with three endpoints exhibiting toxic responses. The mechanism of
AFB1 toxicity is well documented in the scientific literature. On en-
tering the liver, AFB1 undergoes metabolic activation by various cyto-
chrome P450 (CYP450) enzymes to form the reactive toxic epoxides,
exo-8,9-epoxide and endo-8,9-epoxide and other oxidation products
including AFM1, AFQ1 and AFP1 (Ueng et al., 1995; Kensler et al., 2011;
Turner et al., 2012). Further reaction of the exo-epoxide with DNA
forms an adduct with the N7 group of guanine and following depur-
ination, aflatoxin-N7-guanine adduct is excreted in the urine along with
AFM1. Hydrolysis of the endo-epoxide results in the formation of serum
adducts with proteins such as AFB1-lysine and AFB1-albumin. Ad-
ditionally, the epoxides can react with glutathione S-transferases to
form AFB1-mercapturic acid which is also excreted in the urine (Kensler
et al., 2011; Turner et al., 2012). The CYP450 enzymes catalysing AFB1

epoxidation in human liver include CYP1A2 and CYP3A4 (Ueng et al.,
1995) and expression of these enzymes is induced by the nuclear

Fig. 7. Cytotoxic effects of the ternary mixture AFB1/FB1/MC-LR after 48 h exposure on various cell lines. Parameters measured included CN, NA, NI, MM and MMP.
Graphs show effects on HepG2 cells: (a) cell number (CN), (b) nuclear area (NA), (c) mitochondrial mass (MM), (d) mitochondrial membrane potential (MMP), on
MDBK cells: (e) cell number (CN), (f) nuclear area (NA), (g) nuclear intensity (NI), (h) mitochondrial mass (MM) and on Caco-2 cells: (i) mitochondrial mass (MM).
Data for each (n=3) is expressed as a percentage of the untreated control ± standard error of the mean (SEM) of the exposure parameter. Significant cytotoxicity is
denoted by p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***). Only endpoints showing adverse effects are shown.
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receptors aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR)
and constitutive androstane receptor (CAR) (Ayed-Boussema et al.,
2012). These nuclear receptors are most highly expressed in the liver
(Aninat et al., 2006), however have also been reported in the intestine
(Tolson and Wang, 2010) and PXR has also been reported in many other
tissues including kidney (Chang, 2009). Additionally, in another study
comparing the transcriptomes of bovine primary cultured hepatocytes
and MDBK cells, the MDBK cells had a lower abundance of many of the
CYP450 enzymes required for the biotransformation of xenobiotic
substances (Elgendy et al., 2017). In light of the exhibited concentra-
tions of these nuclear receptors in the tissues outlined, this could ex-
plain the results observed in the cell lines used in this study, that AFB1

induced cytotoxicity in the order HepG2>Caco-2>MDBK. Further-
more, the results of the effects in caco-2 cells agree with studies that
have shown that AFB1 impacts gut function (Grenier and Applegate,
2013; Gratz et al., 2007), that it has been shown to have serious effects
on childhood nutrition (Williams et al., 2004) and is linked to growth
impairment in children (Gong et al., 2002, 2003; 2004). Moreover, this
biotoxin has been implicated in pathological and physiological changes
in the kidney (Lin et al., 2016) and again, evidence of the cytotoxic
effects of AFB1 have been observed in this study.

Reduced cell viability, as a result of exposure to AFB1 has been
observed in a number of studies described in the literature. In 2006,
McKean et al., reported that 1 μM AFB1 caused a 50% decrease in the

cell viability of HepG2 cells after 24 h of exposure when measured by
WST-1 assay. Similarly, using a modified MTT assay, another research
group found that the cell viability of HepG2 cells was decreased by
approximately 20% following treatment with 1 μM AFB1 (Costa et al.,
2009). The results observed in this study were largely in agreement,
showing a small but significant reduction in CN (17.3%, p≤ 0.001) of
HepG2 cells following 48 h of exposure to 1.6 μM AFB1. Additionally,
significant increases (when compared to controls) were observed for
both NA (17%, p≤ 0.001) and MM (12.3%, p≤ 0.001). Analysis of
nuclear morphology, for example NA, may provide insights into the
mechanics of cell growth and death (Boncler et al., 2017) and in fact
alterations to the size and shape of the cell nucleus is associated with
many types of cancer (Zink et al., 2004). Cell death attributed to ne-
crosis is characterised by increased NA or oncosis/swelling of the cell
nuclei in response to disease or injury (Vanden Berghe et al., 2014),
unlike apoptosis, programmed cell death characterised by nuclear
shrinkage and pyknosis (Wilson et al., 2016) in response to cell injury.
In this instance, AFB1 (1.6 μM) appears to have induced regulated ne-
crosis (genetically controlled cell death process) as described by
Vanden Berghe et al. (2014). Furthermore, increased MM, as observed,
is characteristic of enhanced biogenesis as a result of increased mi-
tochondrial respiration and is a typical response to cell damage (O'Brien
and Edvardsson, 2017). Often an increase in MM is accompanied by
reduced MMP (O'Brien et al., 2006), although this has not been

Fig. 8. Interactive cytotoxic effects of the mixture AFB1/FB1/MC-LR to various endpoints after 48 h exposure to different cell lines. Effects are shown for HepG2 cells
(a) cell number CN, (b) nuclear area (NA), (c) nuclear intensity (NI) and in MDBK cells: (d) nuclear area (NA). Data for each (n=3) is expressed as a percentage of
the untreated control ± standard error of the mean (SEM) for each parameter. Green bars denote the expected values and grey bars the measured values. Significant
antagonistic and synergistic effects are represented by p≤ 0.05 (*), p≤ 0.01 (**), p≤ 0.001 (***). (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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observed for this toxin at the concentration studied.
Similar effects were observed for Caco-2 and MDBK cells treated

with AFB1, although not to the same extent. Cell death, exemplified by
a decrease in CN, was also evident for MDBK cells when treated with
AFB1 (1.6 μM); CN dropped by 13.5% (p≤ 0.05) when compared to the
solvent control. This was similar to the findings of another study that
reported a decrease in CN of 10.1% after treatment with AFB1 (4.1 μM)
when measured using the MTT assay (Clarke et al., 2014). Other re-
search groups also reported reduced cell viability in kidney cell lines. In
a porcine kidney cell line (PK-15), the IC50 of AFB1 was determined to
be 38.8 μM (Lei et al., 2013) while in Vero cells from green monkey
kidney, the IC50 of AFB1 was estimated to be 30 μM (El Golli-Bennour
et al., 2010). Although there appears to be a disparity in sensitivity
when comparing the kidney cell lines, these numerous experiments
serve to highlight that AFB1 induces cytotoxic effects in the kidney. As
seen with the HepG2 cell line, a significant increase in NA (6.6%,
p≤ 0.01) accompanied a drop in CN was observed in MDBK cells, thus
indicating necrosis. Investigation of the effects of AFB1 on Caco-2 cells
showed increases in NA (10.1%, p≤ 0.001) and MM (8.3%, p≤ 0.001)
again demonstrating cellular injury as a result of exposure to this toxin.
In terms of cell viability as determined by CN, no significant decreases
or increases were measured in this study. This is in total agreement with
another reported study where no significant cytotoxic effects were
evident using MTT and NR endpoints (Clarke et al., 2014). Further-
more, in another study (Gratz et al., 2007), a reduction of transe-
pithelial resistance (TER) signifying cellular damage following in-
cubation of caco-2 cells with AFB1 (150 μM) was not associated with
reduced cell viability.

No cytotoxicity, in terms of CN was exhibited in HepG2, Caco-2 or
MDBK cell lines after treatment with FB1 at concentrations of
0.28 μM–11.1 μM. This is in total agreement with many other studies
investigating this mycotoxin. IC50 values for FB1 in HepG2 cells have
been estimated at 64.78 μM (Wentzel et al., 2017), 200 μM (Chuturgoon
et al., 2015) and 399.2 μM (McKean et al., 2006). Additionally, in
primary rat hepatocytes treated with 50 μM FB1 (Ribeiro et al., 2010) or
200 μM FB1 (Sun et al., 2015), no negative impact was observed on cell
viability. Examination of the effect of FB1 on Caco-2 cells has also
shown that this cell line did not exhibit signs of toxicity at concentra-
tions ranging from 1.4 μM to 138 μM (Caloni et al., 2002), at 13.9 μM
(Clarke et al., 2014), or 0.1 μM–10 μM (Fernández-Blanco et al., 2016).
No adverse effects were displayed when FB1 was incubated with MDBK
cells, also in agreement with the study by Clarke et al. (2014).

The cyanotoxin, MC-LR was also tested in HepG2, Caco-2 and MDBK
cell lines and, as seen for FB1, no effects were observed in any of the cell
lines at concentrations ranging from 0.2 nM to 250 nM. The results for
HepG2 cells are in complete accordance with what has been published
in the literature. McDermott et al. (1998) demonstrated that in primary
rat hepatocytes treated with concentrations ranging from 0.01 μM to
2 μM MC-LR, no significant differences in viability were found when
compared with the untreated control cells. These results were further
substantiated in various other studies in which HepG2 cells were ex-
posed to concentrations of 10 nM, 100 nM and 1 μM (Žegura et al.,
2003), at concentrations of 1 nM to 1 μM (Ikehara et al., 2015) and MC-
LR concentrations of 0.1 nM–10 μM (Ma et al., 2017). Moreover, in the
presence of 1 μM MC-LR, no morphological changes were induced
(Ikehara et al., 2015). In complete contrast to these findings in an ex-
periment using primary mouse hepatocytes, MC-LR at concentrations of
1 nM and 3 nM were found to induce increases in cell numbers up to
42 h after exposure, with 1 nM producing significant increases
(Humpage and Falconer, 1999). Additionally, this research group re-
vealed that, treatment with 10 nM MC-LR was found to decrease cell
numbers by 50% after 18 h which indicates that mouse liver cells may
be more sensitive to the effects of this toxin. Furthermore, the effects of
MC-LR were compared in HepG2 cells and in normal human hepato-
cytes (h-Nheps) and the results highlighted that while no morphological
or viability changes were found at concentrations of 1 nM–1000 nM in

HepG2 cells, nuclear morphology was altered and cellular viability was
inhibited in the h-Nheps cell line (Ikehara et al., 2015).

In relation to the impact of MC-LR on Caco-2 cells, the research is
contradictory. Our findings correspond with the work of Vesterkvist
et al. (2012). This research group tested MC-LR at concentrations of
1 μM, 50 μM and 100 μM and no significant alterations were evident
using the WST-1 assay for cell proliferation or the lactate dehy-
drogenase assay (LDH) for quantification of plasma membrane damage.
Contrary to this, cytotoxicity was found following exposure to 50 μM
and 100 μM MC-LR as determined by the NR assay and total protein
content, although little difference was observed at these concentrations
using the XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-S-[(phenyla-
mino)carbonyl]-2H-tetrazolium hydroxide) assay (Huguet et al., 2013).
Another group also noted that after 48 h of exposure, the IC50 value for
MC-LR (total protein content) was 115.7 ± 9.2 μM and for NR uptake,
it was more pronounced at 139.8 ± 11.2 μM. The morphological ef-
fects when examined by light microscopy showed, not only cellular
reduction but also cell shrinkage at 200 μM (Puerto et al., 2010). While
our findings are not in agreement with the two latter experiments de-
scribed, this may be attributed to the concentration ranges investigated.

At the concentrations tested, 0.2 nM–250 nM, MC-LR did not induce
any cytotoxic effects in MDBK cells. Once again, these findings conflict
with another study reported in the literature where cell viability in
human embryonic kidney and human kidney adenocarcinoma cell lines
significantly decreased after treatment with 50 μM MC-LR (Piyathilaka
et al., 2015). As outlined previously, the concentrations tested in both
studies differ by a factor of at least 200-fold and thus in all likelihood,
account for the difference. Furthermore, choice of cell line will have a
huge impact due to different sensitivities of cell lines to the toxins as
observed for HepG2, h-Nheps and primary mouse hepatocytes.

4.2. Cytotoxicity of the binary mixtures AFB1/MC-LR and FB1/MC-LR

The binary mixture of AFB1/MC-LR appeared to induce more cy-
totoxic effects when compared to FB1/MC-LR and alterations in the cells
were only observed for the highest concentrations tested for each
mixture. In terms of cellular damage induced by AFB1/MC-LR, the re-
sults were in the order of HepG2>Caco-2>MDBK. Three endpoints
were affected in the HepG2 cell line, namely, CN, NA and MM.
Although significant, the decrease and increases in CN, NA and MM,
respectively, were slightly less than those found for AFB1 alone. A si-
milar trend was observed for MM and NA in Caco-2 and MDBK cells.
Antagonism was displayed for CN with this combination of toxins at all
concentrations tested in HepG2 cells in addition to NA in both HepG2
and MDBK cells. These results were surprising and while there are no
other studies of these mixtures, to our knowledge to compare with,
some of the literature detailing the toxic effects of MC-LR may help to
explain our findings. Many of the studies, as detailed previously, in-
dicate that no toxic effects were seen (using higher concentrations) in
HepG2 cells, however use of alternative cell lines did provide con-
trasting results (Ikehara et al., 2015; Humpage and Falconer, 1999) and
if fact using sub-lethal concentrations of 1 nM–3 nM (the same range
used in this study), MC-LR caused cell proliferation in primary mouse
hepatocytes (Humpage and Falconer, 1999). NI is an important nuclear
parameter in assessing cellular injury or damage and in the event of
increasing cytotoxicity, the nucleus will swell and the NI will decrease
(Cole et al., 2014). The results of this study highlighted that synergy
was displayed for the highest concentration of AFB1/MC-LR in NI of the
HepG2 cells. Several retrospective epidemiological studies in China
have suggested that simultaneous exposure to MC-LR and AFB1 through
drinking water and food may exacerbate the high incidences of primary
liver cancer in China, (Ueno et al., 1996; Liu et al., 2017), therefore the
assumption would be to expect synergistic effects in many of the end-
points measured. However, these were not the findings of this study
stressing the complexity of interpretation of results and of the need for
further assessments. That said, the results are also expected as dual
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phase reactions are commonplace when investigating complex mixture
effects (McKean et al., 2006).

The combination of FB1/MC-LR induced cytotoxicity only in the
MDBK cell line where a significant decrease and increase was measured
in CN and NI, respectively, indicating cell death by apoptosis. The
concentrations triggering this damage were 11.1 μM FB1/250 nM MC-
LR and although, to our knowledge, studies of this combination have
not been reported, both FB1 and MC-LR individually have been shown
to induce apoptosis (Humpage and Falconer, 1999; Ribeiro et al.,
2010). In HepG2 cells at concentrations of 0.28 μM FB1/0.2 nM MC-LR
and 1.4 μM FB1/1 nM MC-LR, i.e. at and below WHO limits for MC-LR
in water and at the highest mixture concentration (11.1 μM FB1/250 nM
MC-LR) in MDBK cells, antagonism was displayed. In contrast, sy-
nergistic effects were observed for the endpoints NI and MMP in Caco-2
and MDBK cell lines, respectively, at the highest concentrations tested.

4.3. Cytotoxicity of the ternary combination of AFB1/FB1/MC-LR

Only the ternary combination containing the highest concentration
of each toxin (1.6 μM AFB1/11.1 μM FB1/250 nM MC-LR) caused cy-
totoxic effects on the cell lines. HepG2 cells were found to be the most
sensitive to the ternary mixtures tested, followed by MDBK cells and
finally Caco-2 cells. CN, NA, MM and MMP were all significantly af-
fected in HepG2 cells. Decreased CN, and increased NA and MM, as
discussed previously suggest that the cell death was as a result of ne-
crosis, however, with an increase in MMP, that suggests the apoptotic
pathway. This may be explained by the “apoptosis-necrosis continuum”
as described by Zeiss (2003), whereby necrosis or apoptosis are trig-
gered through a shared biochemical cascade and cell death may be
expressed as one or the other depending on the physiological condi-
tions. Similarly, this mechanism was observed for MDBK cells with
typical trends for necrosis observed for CN, NA and MM, however more
indicative of apoptosis was an increase in NI. Increased MM, was the
only parameter affected in Caco-2 cells. In terms of the interactive ef-
fects of the toxins, the most significant results were observed in the
HepG2 cell line. At the two lowest concentrations tested, antagonism
was evident for the endpoints of CN and NA, an outcome that was seen
when examining the results of the binary mixtures in this cell line.
Antagonism was also observed at the highest concentrations of these
three toxins in the NA endpoint for MDBK cells. Of note, synergy was
revealed for NI at the lower end of the concentration range (6.4 nM
AFB1/1.4 μM FB1/1 nM MC-LR).

5. Conclusion

The present study was designed to investigate the combined effects
of AFB1, FB1 and MC-LR at realistic exposure concentrations pertinent
to the poorest populations living in underdeveloped countries such as
Africa, Latin America and East and South Asia. The results have con-
firmed that, at the exposure levels reported for these countries, single,
binary and ternary combinations of these toxins may pose a consider-
able risk to human health. The cytotoxicity revealed for AFB1, AFB1/
MC-LR, FB1/MC-LR and AFB1/FB1/MC-LR at the highest concentrations
tested indicate there is clearly a real threat to populations in East and
South Asia and Africa, as, in some instances, they have been found to be
exposed to higher levels of these natural toxins, (Table 1). For the
majority of the parameters tested using the specified binary and ternary
mixtures, additive responses were observed, while antagonism was
determined for some of the mixtures. More importantly however, sy-
nergistic effects were observed for some endpoints at the highest con-
centrations tested in this study (AFB1/MC-LR and FB1/MC-LR). Even at
low concentrations synergy was exhibited for the ternary mixture
(AFB1/FB1/MC-LR) equivalent to exposures of 0.006, 3.33 and
0.003 μg/kg/bw/d for AFB1, FB1 and MC-LR, respectively. It is clear
that populations can be exposed to these biotoxins at these levels
(Table 1), therefore they present a significant potential threat.

Moreover, the study has revealed that further research is required using
different cell lines and using additional in vitro parameters to under-
stand the mechanics of these toxicological interactions in order to
protect public health.
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