87 research outputs found

    Production, secretion and purification of a correctly folded staphylococcal antigen in Lactococcus lactis.

    Get PDF
    International audienceLactococcus lactis, a lactic acid bacterium traditionally used to ferment milk and manufacture cheeses, is also, in the biotechnology field, an interesting host to produce proteins of medical interest, as it is "Generally Recognized As Safe". Furthermore, as L. lactis naturally secretes only one major endogenous protein (Usp45), the secretion of heterologous proteins in this species facilitates their purification from a protein-poor culture medium. Here, we developed and optimized protein production and secretion in L. lactis to obtain proteins of high quality, both correctly folded and pure to a high extent. As proteins to be produced, we chose the two transmembrane members of the HtrA protease family in Staphylococcus aureus, an important extra-cellular pathogen, as these putative surface-exposed antigens could constitute good targets for vaccine development. A recombinant ORF encoding a C-terminal, soluble, proteolytically inactive and tagged form of each staphylococcal HtrA protein was cloned into a lactococcal expression-secretion vector. After growth and induction of recombinant gene expression, L. lactis was able to produce and secrete each recombinant rHtrA protein as a stable form that accumulated in the culture medium in similar amounts as the naturally secreted endogenous protein, Usp45. L. lactis growth in fermenters, in particular in a rich optimized medium, led to higher yields for each rHtrA protein. Protein purification from the lactococcal culture medium was easily achieved in one step and allowed recovery of highly pure and stable proteins whose identity was confirmed by mass spectrometry. Although rHtrA proteins were monomeric, they displayed the same secondary structure content, thermal stability and chaperone activity as many other HtrA family members, indicating that they were correctly folded. rHtrA protein immunogenicity was established in mice. The raised polyclonal antibodies allowed studying the expression and subcellular localization of wild type proteins in S. aureus: although both proteins were expressed, only HtrA1 was found to be, as predicted, exposed at the staphylococcal cell surface suggesting that it could be a better candidate for vaccine development. In this study, an efficient process was developed to produce and secrete putative staphylococcal surface antigens in L. lactis and to purify them to homogeneity in one step from the culture supernatant. This allowed recovering fully folded, stable and pure proteins which constitute promising vaccine candidates to be tested for protection against staphylococcal infection. L. lactis thus proved to be an efficient and competitive cell factory to produce proteins of high quality for medical applications

    Determination of the Absolute Molar Mass of [Fe-S]-Containing Proteins Using Size Exclusion Chromatography-Multi-Angle Light Scattering (SEC-MALS)

    Get PDF
    Size Exclusion Chromatography coupled with Multi-Angle Light Scattering (SEC-MALS) is a technique that determines the absolute molar mass (molecular weight) of macromolecules in solution, such as proteins or polymers, by detecting their light scattering intensity. Because SEC-MALS does not rely on the assumption of the globular state of the analyte and the calibration of standards, the molar mass can be obtained for proteins of any shape, as well as for intrinsically disordered proteins and aggregates. Yet, corrections need to be made for samples that absorb light atthe wavelength of the MALS laser, such as iron–sulfur [Fe-S] cluster-containing proteins. We analyze several examples of [2Fe-2S] and [4Fe-4S] cluster-containing proteins, for which various corrections were applied to determine the absolute molar mass of both the apo- and holo-forms. Importantly, the determination of the absolute molar mass of the [2Fe-2S]-containing holo-NEET proteins allowed us to ascertain a change in the oligomerization state upon cluster binding and, thus, to highlight one essential function of the cluster

    Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork

    Get PDF
    International audienceMCM2 is a subunit of the replicative helicase machinery shown to interact with histones H3 and H4 during the replication process through its N-terminal domain. During replication, this interaction has been proposed to assist disassembly and assembly of nu-cleosomes on DNA. However, how this interaction participates in crosstalk with histone chaperones at the replication fork remains to be elucidated. Here, we solved the crystal structure of the ternary complex between the histone-binding domain of Mcm2 and the histones H3-H4 at 2.9 ˚ A resolution. Histones H3 and H4 assemble as a tetramer in the crystal structure , but MCM2 interacts only with a single molecule of H3-H4. The latter interaction exploits binding surfaces that contact either DNA or H2B when H3-H4 dimers are incorporated in the nucleosome core particle. Upon binding of the ternary complex with the histone chaperone ASF1, the histone tetramer dissociates and both MCM2 and ASF1 interact simultaneously with the histones forming a 1:1:1:1 het-eromeric complex. Thermodynamic analysis of the quaternary complex together with structural model-ing support that ASF1 and MCM2 could form a chaperoning module for histones H3 and H4 protecting them from promiscuous interactions. This suggests an additional function for MCM2 outside its helicase function as a proper histone chaperone connected to the replication pathway

    RĂ©plication de l'ADN mitochondrial : identification d’une seconde activitĂ© ADN polymĂ©rase dans la mitochondrie de S.cerevisiae et Contribution Ă  l’étude du rĂ©plisome mitochondrial

    No full text
    Au cours de la croissance des levures, la cellule doit dupliquer sont gĂ©nome nuclĂ©aire et mitochondrial, le processus de rĂ©plication est bien moins Ă©tudiĂ© dans les mitochondries. NĂ©anmoins, si de multiples ADN polymĂ©rases sont impliquĂ©es dans les processus de rĂ©plication et de rĂ©paration dans le noyau, il est considĂ©rĂ© jusqu’à aujourd’hui qu’une seule ADN polymĂ©rase est impliquĂ©e dans ces processus dans la mitochondrie. Des rĂ©sultats rĂ©cents mettent en exergue le fait que la situation est bien plus compliquĂ©e qu’il n’y apparait au dĂ©part. Pour Ă©lucider le processus de rĂ©plication dans la mitochondrie de levure, j’ai focalisĂ© mon intĂ©rĂȘt Ă  tenter de purifier et de caractĂ©riser le complexe de rĂ©plication. Ce travail Ă©tait important Ă  dĂ©velopper Ă©tant donnĂ© la dĂ©couverte au laboratoire d’une seconde ADN polymĂ©rase supplĂ©mentaire Ă  la polymĂ©rase gamma, dans les mitochondries de levure. Une premiĂšre partie de ma thĂšse a Ă©tĂ© de m’investir afin d’obtenir suffisamment de protĂ©ines dans le but d’une identification par spectromĂ©trie de masse, compte tenu de la faible proportion des ADN polymĂ©rases dans la cellule et en particulier dans la mitochondrie. Nous avons dĂ©montrĂ© que cette polymĂ©rase est codĂ©e par le gĂšne unique POL1. Par des techniques d’ultracentrifugation et d’analyse biochimiques, j’ai rĂ©ussi Ă  isoler et caractĂ©riser un complexe de rĂ©plication mitochondrial. Des techniques d’exclusion chromatographiques ont permis d’attribuer une masse native Ă  ce complexe. Sa composition a Ă©tĂ© Ă©tudiĂ©e grĂące Ă  des colonnes ioniques et hydrophobes, une autre mĂ©thode d’analyse repose sur l’utilisation de colonnes d’affinitĂ© afin de reconstituer in-vitro les interactions existant entre plusieurs protĂ©ines prĂ©sumĂ©es impliquĂ©es. Ainsi, un rĂ©seau d’interactions impliquant les deux ADN polymĂ©rases mitochondriales avec cinq autres protĂ©ines a Ă©tĂ© reconstituĂ©. La masse native de diffĂ©rentes formes stables de ce complexe se situent Ă  500 kDa ou au-delĂ  de 1 MDa.During yeast growth, cells must duplicate their nuclear and mitochondrial DNA. The replication process involved is less studied in mitochondria. Nevertheless, if multiple DNA polymerases are implicated in the nuclear replication and repair mechanisms, until now it is believed that only one DNA polymerase is involved in these processes in mitochondria. Recent results pointed out that the situation is more complicated than preliminary believed. To elucidate the replication process in yeast mitochondria I focused my interest in attempts to purify and characterize the replication complexes. This work was important to develop in accord with the discovery in the laboratory of a second DNA polymerase in addition to the polymerase gamma in yeast mitochondria. One first part of my thesis was to hardly purify enough of this enzyme to be allowed to identify it by mass spectrometry as the DNA polymerase alpha, encoded by the unique POL1 gene. By ultracentrifugation and biochemical techniques, I succeeded to purify the complex. Exclusion chromatographies were managed to elucidate the native mass of this complex. In addition ionic and hydrophobic chromatographic columns were carried out to determine its composition. Another way to study the complex was the reconstitution in vitro of the interactions happening with some usual suspect proteins with the help of chromatographic affinity columns. I reconstituted partly an interactions model network, including the two mitochondrial DNA polymerases and 5 others proteins implicated in replication. I determined the mass of different stable forms of the isolated complexes, around 500 kDa and over 1 MD

    RĂ©plication de l'ADN mitochondrial : identification d’une seconde activitĂ© ADN polymĂ©rase dans la mitochondrie de S.cerevisiae et Contribution Ă  l’étude du rĂ©plisome mitochondrial

    No full text
    Au cours de la croissance des levures, la cellule doit dupliquer sont gĂ©nome nuclĂ©aire et mitochondrial, le processus de rĂ©plication est bien moins Ă©tudiĂ© dans les mitochondries. NĂ©anmoins, si de multiples ADN polymĂ©rases sont impliquĂ©es dans les processus de rĂ©plication et de rĂ©paration dans le noyau, il est considĂ©rĂ© jusqu’à aujourd’hui qu’une seule ADN polymĂ©rase est impliquĂ©e dans ces processus dans la mitochondrie. Des rĂ©sultats rĂ©cents mettent en exergue le fait que la situation est bien plus compliquĂ©e qu’il n’y apparait au dĂ©part. Pour Ă©lucider le processus de rĂ©plication dans la mitochondrie de levure, j’ai focalisĂ© mon intĂ©rĂȘt Ă  tenter de purifier et de caractĂ©riser le complexe de rĂ©plication. Ce travail Ă©tait important Ă  dĂ©velopper Ă©tant donnĂ© la dĂ©couverte au laboratoire d’une seconde ADN polymĂ©rase supplĂ©mentaire Ă  la polymĂ©rase gamma, dans les mitochondries de levure. Une premiĂšre partie de ma thĂšse a Ă©tĂ© de m’investir afin d’obtenir suffisamment de protĂ©ines dans le but d’une identification par spectromĂ©trie de masse, compte tenu de la faible proportion des ADN polymĂ©rases dans la cellule et en particulier dans la mitochondrie. Nous avons dĂ©montrĂ© que cette polymĂ©rase est codĂ©e par le gĂšne unique POL1. Par des techniques d’ultracentrifugation et d’analyse biochimiques, j’ai rĂ©ussi Ă  isoler et caractĂ©riser un complexe de rĂ©plication mitochondrial. Des techniques d’exclusion chromatographiques ont permis d’attribuer une masse native Ă  ce complexe. Sa composition a Ă©tĂ© Ă©tudiĂ©e grĂące Ă  des colonnes ioniques et hydrophobes, une autre mĂ©thode d’analyse repose sur l’utilisation de colonnes d’affinitĂ© afin de reconstituer in-vitro les interactions existant entre plusieurs protĂ©ines prĂ©sumĂ©es impliquĂ©es. Ainsi, un rĂ©seau d’interactions impliquant les deux ADN polymĂ©rases mitochondriales avec cinq autres protĂ©ines a Ă©tĂ© reconstituĂ©. La masse native de diffĂ©rentes formes stables de ce complexe se situent Ă  500 kDa ou au-delĂ  de 1 MDa.During yeast growth, cells must duplicate their nuclear and mitochondrial DNA. The replication process involved is less studied in mitochondria. Nevertheless, if multiple DNA polymerases are implicated in the nuclear replication and repair mechanisms, until now it is believed that only one DNA polymerase is involved in these processes in mitochondria. Recent results pointed out that the situation is more complicated than preliminary believed. To elucidate the replication process in yeast mitochondria I focused my interest in attempts to purify and characterize the replication complexes. This work was important to develop in accord with the discovery in the laboratory of a second DNA polymerase in addition to the polymerase gamma in yeast mitochondria. One first part of my thesis was to hardly purify enough of this enzyme to be allowed to identify it by mass spectrometry as the DNA polymerase alpha, encoded by the unique POL1 gene. By ultracentrifugation and biochemical techniques, I succeeded to purify the complex. Exclusion chromatographies were managed to elucidate the native mass of this complex. In addition ionic and hydrophobic chromatographic columns were carried out to determine its composition. Another way to study the complex was the reconstitution in vitro of the interactions happening with some usual suspect proteins with the help of chromatographic affinity columns. I reconstituted partly an interactions model network, including the two mitochondrial DNA polymerases and 5 others proteins implicated in replication. I determined the mass of different stable forms of the isolated complexes, around 500 kDa and over 1 MD

    Réplication de l'ADN mitochondrial (identification d'une seconde activité ADN polymérase dans la mitochondrie de S.cerevisiae et Contribution à l'étude du réplisome mitochondrial)

    No full text
    Au cours de la croissance des levures, la cellule doit dupliquer sont gĂ©nome nuclĂ©aire et mitochondrial, le processus de rĂ©plication est bien moins Ă©tudiĂ© dans les mitochondries. NĂ©anmoins, si de multiples ADN polymĂ©rases sont impliquĂ©es dans les processus de rĂ©plication et de rĂ©paration dans le noyau, il est considĂ©rĂ© jusqu Ă  aujourd hui qu une seule ADN polymĂ©rase est impliquĂ©e dans ces processus dans la mitochondrie. Des rĂ©sultats rĂ©cents mettent en exergue le fait que la situation est bien plus compliquĂ©e qu il n y apparait au dĂ©part. Pour Ă©lucider le processus de rĂ©plication dans la mitochondrie de levure, j ai focalisĂ© mon intĂ©rĂȘt Ă  tenter de purifier et de caractĂ©riser le complexe de rĂ©plication. Ce travail Ă©tait important Ă  dĂ©velopper Ă©tant donnĂ© la dĂ©couverte au laboratoire d une seconde ADN polymĂ©rase supplĂ©mentaire Ă  la polymĂ©rase gamma, dans les mitochondries de levure. Une premiĂšre partie de ma thĂšse a Ă©tĂ© de m investir afin d obtenir suffisamment de protĂ©ines dans le but d une identification par spectromĂ©trie de masse, compte tenu de la faible proportion des ADN polymĂ©rases dans la cellule et en particulier dans la mitochondrie. Nous avons dĂ©montrĂ© que cette polymĂ©rase est codĂ©e par le gĂšne unique POL1. Par des techniques d ultracentrifugation et d analyse biochimiques, j ai rĂ©ussi Ă  isoler et caractĂ©riser un complexe de rĂ©plication mitochondrial. Des techniques d exclusion chromatographiques ont permis d attribuer une masse native Ă  ce complexe. Sa composition a Ă©tĂ© Ă©tudiĂ©e grĂące Ă  des colonnes ioniques et hydrophobes, une autre mĂ©thode d analyse repose sur l utilisation de colonnes d affinitĂ© afin de reconstituer in-vitro les interactions existant entre plusieurs protĂ©ines prĂ©sumĂ©es impliquĂ©es. Ainsi, un rĂ©seau d interactions impliquant les deux ADN polymĂ©rases mitochondriales avec cinq autres protĂ©ines a Ă©tĂ© reconstituĂ©. La masse native de diffĂ©rentes formes stables de ce complexe se situent Ă  500 kDa ou au-delĂ  de 1 MDa.During yeast growth, cells must duplicate their nuclear and mitochondrial DNA. The replication process involved is less studied in mitochondria. Nevertheless, if multiple DNA polymerases are implicated in the nuclear replication and repair mechanisms, until now it is believed that only one DNA polymerase is involved in these processes in mitochondria. Recent results pointed out that the situation is more complicated than preliminary believed. To elucidate the replication process in yeast mitochondria I focused my interest in attempts to purify and characterize the replication complexes. This work was important to develop in accord with the discovery in the laboratory of a second DNA polymerase in addition to the polymerase gamma in yeast mitochondria. One first part of my thesis was to hardly purify enough of this enzyme to be allowed to identify it by mass spectrometry as the DNA polymerase alpha, encoded by the unique POL1 gene. By ultracentrifugation and biochemical techniques, I succeeded to purify the complex. Exclusion chromatographies were managed to elucidate the native mass of this complex. In addition ionic and hydrophobic chromatographic columns were carried out to determine its composition. Another way to study the complex was the reconstitution in vitro of the interactions happening with some usual suspect proteins with the help of chromatographic affinity columns. I reconstituted partly an interactions model network, including the two mitochondrial DNA polymerases and 5 others proteins implicated in replication. I determined the mass of different stable forms of the isolated complexes, around 500 kDa and over 1 MDaBORDEAUX2-Bib. Ă©lectronique (335229905) / SudocSudocFranceF

    Cdk1-dependent control of membrane-trafficking dynamics

    No full text
    International audienc

    Biochemical and Structural Insights into Microtubule Perturbation by CopN from Chlamydia pneumoniae

    No full text
    International audienceAlthough the actin network is commonly hijacked by pathogens, there are few reports of parasites targeting microtubules. The proposed member of the LcrE protein family from some Chlamydia species (e.g. pCopN from C. pneumoniae) binds tubulin and inhibits microtubule assembly in vitro. From the pCopN structure and its similarity with that of MxiC from Shigella, we definitively confirm CopN as the Chlamydia homolog of the LcrE family of bacterial proteins involved in the regulation of type III secretion. We have also investigated the molecular basis for the pCopN effect on microtubules. We show that pCopN delays microtubule nucleation and acts as a pure tubulin-sequestering protein at steady state. It targets the ÎČ subunit interface involved in the tubulin longitudinal self-association in a way that inhibits nucleotide exchange. pCopN contains three repetitions of a helical motif flanked by disordered N- and C-terminal extensions. We have identified the pCopN minimal tubulin-binding region within the second and third repeats. Together with the intriguing observation that C. trachomatis CopN does not bind tubulin, our data support the notion that, in addition to the shared function of type III secretion regulation, these proteins have evolved different functions in the host cytosol. Our results provide a mechanistic framework for understanding the C. pneumoniae CopN-specific inhibition of microtubule assembly
    • 

    corecore