20 research outputs found
Stimulation of reverse transcriptase generated cDNAs with specific indels by template RNA structure: retrotransposon, dNTP balance, RT-reagent usage
RNA dependent DNA-polymerases, reverse transcriptases, are key enzymes for retroviruses and retroelements. Their fidelity, including indel generation, is significant for their use as reagents including for deep sequencing. Here, we report that certain RNA template structures and G-rich sequences, ahead of diverse reverse transcriptases can be strong stimulators for slippage at slippage-prone template motif sequence 3âČ of such âslippage-stimulatoryâ structures. Where slippage is stimulated, the resulting products have one or more additional base(s) compared to the corresponding template motif. Such structures also inhibit slippage-mediated base omission which can be more frequent in the absence of a relevant stemâloop. Slippage directionality, base insertion and omission, is sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5âČ adjacent base. The retrotransposon-derived enzyme TGIRT exhibits more slippage in vitro than the retroviral enzymes tested including that from HIV. Structure-mediated slippage may be exhibited by other polymerases and enrich gene expression. A cassette from Drosophila retrotransposon Dme1_chrX_2630566, a candidate for utilizing slippage for its GagPol synthesis, exhibits strong slippage in vitro. Given the widespread occurrence and importance of retrotransposons, systematic studies to reveal the extent of their functional utilization of RT slippage are merited
Bifidobacterium breve UCC2003 employs multiple transcriptional regulators to control metabolism of particular human milk oligosaccharides
Bifidobacterial carbohydrate metabolism has been studied in considerable detail for a variety of both plant and human-derived glycans, particularly involving the bifidobacterial prototype Bifidobacterium breve UCC2003. We recently elucidated the metabolic pathways by which the human milk oligosaccharide (HMO) constituents lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT) and lacto-N-biose (LNB) are utilized by B. breve UCC2003. However, to date no work has been carried out on the regulatory mechanisms that control expression of the genetic loci involved in these HMO metabolic pathways. In the current study, we describe the characterization of three transcriptional regulators and corresponding operator and associated (inducible) promoter sequences, the latter governing transcription of the genetic elements involved in LN(n)T/LNB metabolism. The activity of these regulators is dependent on the release of specific monosaccharides, which are believed to act as allosteric effectors, and which are derived from the corresponding HMOs targeted by the particular locus.Importance Human milk oligosaccharides (HMOs) are a key factor in the development of the breastfed infant microbiota. They function as prebiotics, selecting for a specific range of microbes, including a number of infant-associated species of bifidobacteria, which are thought to provide a range of health benefits to the infant host. While much research has been carried out on elucidating the mechanisms of HMO metabolism in infant-associated bifidobacteria, there is to date very little understanding of the transcriptional regulation of these pathways. The current study reveals a multi-component transcriptional regulation system that controls the recently-identified pathways of HMO metabolism in the infant-associated Bifidobacterium breve prototype strain UCC2003. This not only provides insight into the regulatory mechanisms present in other infant-associated bifidobacteria, but also provides an example of a network of sequential steps regulating microbial carbohydrate metabolism
Maximum depth sequencing reveals an ON/OFF replication slippage switch and apparent in vivo selection for bifidobacterial pilus expression
The human gut microbiome, of which the genus Bifidobacterium is a prevalent and abundant member, is thought to sustain and enhance human health. Several surface-exposed structures, including so-called sortase-dependent pili, represent important bifidobacterial gut colonization factors. Here we show that expression of two sortase-dependent pilus clusters of the prototype Bifidobacterium breve UCC2003 depends on replication slippage at an intragenic G-tract, equivalents of which are present in various members of the Bifidobacterium genus. The nature and extent of this slippage is modulated by the host environment. Involvement of such sortase-dependent pilus clusters in microbe-host interactions, including bacterial attachment to the gut epithelial cells, has been shown previously and is corroborated here for one case. Using a Maximum Depth Sequencing strategy aimed at excluding PCR and sequencing errors introduced by DNA polymerase reagents, specific G-tract sequences in B. breve UCC2003 reveal a range of G-tract lengths whose plasticity within the population is functionally utilized. Interestingly, replication slippage is shown to be modulated under in vivo conditions in a murine model. This in vivo modulation causes an enrichment of a G-tract length which appears to allow biosynthesis of these sortase-dependent pili. This work provides the first example of productive replication slippage influenced by in vivo conditions. It highlights the potential for microdiversity generation in âbeneficialâ gut commensals
Carbon Dynamics, Development and Stress Responses in Arabidopsis: Involvement of the APL4 Subunit of ADP-Glucose Pyrophosphorylase (Starch Synthesis)
An Arabidopsis thaliana T-DNA insertional mutant was identified and characterized for enhanced tolerance to the singlet-oxygen-generating herbicide atrazine in comparison to wild-type. This enhanced atrazine tolerance mutant was shown to be affected in the promoter structure and in the regulation of expression of the APL4 isoform of ADP-glucose pyrophosphorylase, a key enzyme of the starch biosynthesis pathway, thus resulting in decrease of APL4 mRNA levels. The impact of this regulatory mutation was confirmed by the analysis of an independent T-DNA insertional mutant also affected in the promoter of the APL4 gene. The resulting tissue-specific modifications of carbon partitioning in plantlets and the effects on plantlet growth and stress tolerance point out to specific and non-redundant roles of APL4 in root carbon dynamics, shoot-root relationships and sink regulations of photosynthesis. Given the effects of exogenous sugar treatments and of endogenous sugar levels on atrazine tolerance in wild-type Arabidopsis plantlets, atrazine tolerance of this apl4 mutant is discussed in terms of perception of carbon status and of investment of sugar allocation in xenobiotic and oxidative stress responses
Analysis of Small Non-coding RNAs as Signaling Intermediates of Environmentally Integrated Responses to Abiotic Stress
International audienceResearch to date on abiotic stress responses in plants has been largely focused on the plant itself, but current knowledge indicates that microorganisms can interact with and help plants during periods of abiotic stress. In our research, we aim to investigate the interkingdom communication between the plant root and the rhizo-microbiota. Our investigation showed that miRNA plays a pivotal role in this interkingdom communication. Here, we describe a protocol for the analysis of miRNA secreted by the plant root, which includes all of the steps from the isolation of the miRNA to the bioinformatics analysis. Because of their short nucleotide length, Next Generation Sequencing (NGS) library preparation from miRNAs can be challenging due to the presence of dimer adapter contaminants. Therefore, we highlight some strategies we adopt to inhibit the generation of dimer adapters during library preparation. Current screens of miRNA targets mostly focus on the identification of targets present in the same organism expressing the miRNA. Our bioinformatics analysis challenges the barrier of evolutionary divergent organisms to identify candidate sequences of the microbiota targeted by the miRNA of plant roots. This protocol should be of interest to researchers investigating interkingdom RNA-based communication between plants and their associated microorganisms, particularly in the context of holobiont responses to abiotic stresses
Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis
Synthesis of HIV GagPol involves a proportion of ribosomes translating a U6A shift site at the distal end of the gag gene performing a programmed -1 ribosomal frameshift event to enter the overlapping pol gene. In vitro studies here show that at the same shift motif HIV reverse transcriptase generates -1 and +1 indels with their ratio being sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5âČ adjacent base. The GGG sequence 3âČ adjacent to the U6A shift/slippage site, which is important for ribosomal frameshifting, is shown here to limit reverse transcriptase base substitution and indel âerrorsâ in the run of Aâs in the product. The indels characterized here have either 1 more or less A, than the corresponding number of template Uâs. cDNA with 5 Aâs may yield novel Gag product(s), while cDNA with an extra base, 7 Aâs, may only be a minor contributor to GagPol polyprotein. Synthesis of a proportion of non-ribosomal frameshift derived GagPol would be relevant in efforts to identify therapeutically useful compounds that perturb the ratio of GagPol to Gag, and pertinent to the extent in which specific polymerase slippage is utilized in gene expression
Bifidobacterium breve UCC2003 employs multiple transcriptional regulators to control metabolism of particular human milk oligosaccharides
Bifidobacterial carbohydrate metabolism has been studied in considerable detail for a variety of both plant and human-derived glycans, particularly involving the bifidobacterial prototype Bifidobacterium breve UCC2003. We recently elucidated the metabolic pathways by which the human milk oligosaccharide (HMO) constituents lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT) and lacto-N-biose (LNB) are utilized by B. breve UCC2003. However, to date no work has been carried out on the regulatory mechanisms that control expression of the genetic loci involved in these HMO metabolic pathways. In the current study, we describe the characterization of three transcriptional regulators and corresponding operator and associated (inducible) promoter sequences, the latter governing transcription of the genetic elements involved in LN(n)T/LNB metabolism. The activity of these regulators is dependent on the release of specific monosaccharides, which are believed to act as allosteric effectors, and which are derived from the corresponding HMOs targeted by the particular locus.Importance Human milk oligosaccharides (HMOs) are a key factor in the development of the breastfed infant microbiota. They function as prebiotics, selecting for a specific range of microbes, including a number of infant-associated species of bifidobacteria, which are thought to provide a range of health benefits to the infant host. While much research has been carried out on elucidating the mechanisms of HMO metabolism in infant-associated bifidobacteria, there is to date very little understanding of the transcriptional regulation of these pathways. The current study reveals a multi-component transcriptional regulation system that controls the recently-identified pathways of HMO metabolism in the infant-associated Bifidobacterium breve prototype strain UCC2003. This not only provides insight into the regulatory mechanisms present in other infant-associated bifidobacteria, but also provides an example of a network of sequential steps regulating microbial carbohydrate metabolism