37 research outputs found

    Design, Synthesis, and Evaluation of Polyamine Deacetylase Inhibitors, and High-Resolution Crystal Structures of Their Complexes with Acetylpolyamine Amidohydrolase

    No full text
    Polyamines are essential aliphatic polycations that bind to nucleic acids and accordingly are involved in a variety of cellular processes. Polyamine function can be regulated by acetylation and deacetylation, just as histone function can be regulated by lysine acetylation and deacetylation. Acetylpolyamine amidohydrolase (APAH) from <i>Mycoplana ramosa</i> is a zinc-dependent polyamine deacetylase that shares approximately 20% amino acid sequence identity with human histone deacetylases. We now report the X-ray crystal structures of APAH–inhibitor complexes in a new and superior crystal form that diffracts to very high resolution (1.1–1.4 Å). Inhibitors include previously synthesized analogues of <i>N</i><sup>8</sup>-acetylspermidine bearing trifluoromethylketone, thiol, and hydroxamate zinc-binding groups [Decroos, C., Bowman, C. M., and Christianson, D. W. (2013) <i>Bioorg. Med. Chem. 21</i>, 4530], and newly synthesized hydroxamate analogues of shorter, monoacetylated diamines, the most potent of which is the hydroxamate analogue of <i>N</i>-acetylcadaverine (IC<sub>50</sub> = 68 nM). The high-resolution crystal structures of APAH–inhibitor complexes provide key inferences about the inhibition and catalytic mechanism of zinc-dependent deacetylases. For example, the trifluoromethylketone analogue of <i>N</i><sup>8</sup>-acetylspermidine binds as a tetrahedral gem-diol that mimics the tetrahedral intermediate and its flanking transition states in catalysis. Surprisingly, this compound is also a potent inhibitor of human histone deacetylase 8 with an IC<sub>50</sub> of 260 nM. Crystal structures of APAH–inhibitor complexes are determined at the highest resolution of any currently existing zinc deacetylase structure and thus represent the most accurate reference points for understanding structure–mechanism and structure–inhibition relationships in this critically important enzyme family

    SynthÚse et évaluation métabolique de sondes moléculaires destinées à l'Oxymétrie et l'imagerie in vivo par résonance paramagnétique électronique

    No full text
    La concentration en O2 est un paramĂštre physiologique primordial. L'oxymĂ©trie in vivo est importante pour l'aide au diagnostic, au traitement et au pronostic dans le cas du cancer. L'oxymĂ©trie par RPE repose sur l'utilisation de sondes radicalaires dont la largeur du signal est directement proportionnelle Ă  la concentration en O2. Les radicaux persistants tris-(p-carboxyltĂ©trathiaaryl)mĂ©thyle (TAM) possĂšdent les propriĂ©tĂ©s requises pour ĂȘtre utilisĂ©s comme sondes oxymĂ©triques. Cependant, aucune donnĂ©e sur le mĂ©tabolisme de ces composĂ©s utilisĂ©s in vivo n'Ă©tait disponible au dĂ©but de notre travail. Nous avons Ă©tudiĂ© leur rĂ©activitĂ© et leur mĂ©tabolisme in vitro. Nous avons montrĂ© que les radicaux superoxyde et alkylperoxyle oxydent ces radicaux en quinone-mĂ©thides par un mĂ©canisme de dĂ©carboxylation oxydative spĂ©cifique d'oxydants Ă  trois Ă©lectrons. En prĂ©sence de microsomes hĂ©patiques, il se forme deux mĂ©tabolites: le triarylmĂ©thane par rĂ©duction et la quinone-mĂ©thide par oxydation impliquant les cytochromes P45O et leur rĂ©ductase. Les peroxydases en prĂ©sence d'hydroperoxyde transforment les TAM en quinone-mĂ©thide avec la formation intermĂ©diaire du cation triarylmĂ©thyle TAM+. Ce cation TAM+ est rĂ©actif vis-a-vis de divers nuclĂ©ophiles d'importance biologique en formant des adduits covalents. Enfin, nous avons developpĂ© une nouvelle mĂ©thode gĂ©nĂ©rale d'accĂšs Ă  de nouveaux derivĂ©s TAM non symĂ©triques par rĂ©action entre le cation TAM+ et diffĂ©rents nuclĂ©ophiles (ipso-substitution nuclĂ©ophile aromatique dĂ©pendant d'une dĂ©carboxylation oxydative). Nos rĂ©sultats ouvrent de nouvelles perspectives pour le dĂ©veloppement de sondes plus stables utilisables in vivo.O2 concentration is an essential physiological parameter. In vivo oximetry might be helpful for the diagnosis, the prognosis, as well as for the treatment in the case of cancer. EPR oximetry is based on the use of paramagnetic probes the linewidth of which is directly proportional to O2 concentration. Persistent tris(p-carboxyltetrathiaaryl)methyl (TAM) radicals have required properties to be used as EPR oximetry probes. However, at the beginning of our work, no data was available about the metabolism of these probes used in vivo. We studied their reactivity and their metabolism in vitro. We showed that superoxide and alkylperoxyle radicals efficiently oxidize these radicals to the corresponding quinone-methide by an oxidative decarboxylation mechanism, specific of three electron oxidants. In the presence of hepatic microsomes, two major metabolites are formed: the triarylmethane by reduction and the quinone-methide by oxidation, involving cytochromes P45O and their reductase. Peroxydases in the presence of hydroperoxide catalyze the oxidation of TAM into the quinone-methide with the intermediate formation of the trityl cation TAM+. This cation TAM+ appeared to be reactive toward biological nucleophiles by forming covalent adducts. Finally, we also developed a new general method to access to new dissymetric TAM radicals through a reaction between trityl cation TAM+ and various nucleophiles (ipso-nucleophilic aromatic substitution coupled to an oxidative decarboxylation). Our results offer new perspectives for the development of stable probes for in vivo use.PARIS5-BU Saints-PĂšres (751062109) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF
    corecore