57 research outputs found

    Impact of internal heating on the thermal evolution of neutron stars

    Get PDF
    The impact of various competing heating processes on the thermal evolution of neutron stars is investigated. We show that internal heating leads to significantly enhanced surface temperatures for pulsars of middle and old age. The heating due to thermal creep of pinned vortices and due to outward motion of proton vortices in the interior of the star leads to a better agreement with the observed data in the case of enhanced cooling. The strong pinning models are ruled out by a comparison with the cooling data on the old pulsars. For millisecond pulsars, the heating due to thermal creep of pinned vortices and chemical heating of the core have the largest impact on the surface temperatures. The angular dependence of the heating rates require two dimensional cooling simulations in general. Such a simulation is performed for a selected case in order to check the applicability of one-dimensional codes used in the past.Comment: 18 pages, to be published in A & A. Postscript and additional tables at http://www.physik.uni-muenchen.de/sektion/suessmann/astro/cool/schaab.109

    Implications of Hyperon Pairing for Cooling of Neutron Stars

    Get PDF
    The implications of hyperon pairing for the thermal evolution of neutron stars containing hyperons are investigated. The outcome of cooling simulations are compared for neutron star models composed only of nucleons and leptons, models including hyperons, and models including pairing of hyperons. We show that lambda and neutron pairing suppresses all possible fast neutrino emission processes in not too massive neutron stars. The inclusion of lambda pairing yields better agreement with X-ray observations of pulsars. Particularly, the surface temperatures deduced from X-ray observations within the hydrogen atmosphere model are more consistent with the thermal history of neutron stars containing hyperons, if the critical temperature for the onset of lambda and nucleon pairing is not too small.Comment: 7 pages, 3 figures. To be published in ApJL. The postscript and additional tables can be found at http://www.physik.uni-muenchen.de/sektion/suessmann/astro/cool/schaab.089

    Differences in the Cooling Behavior of Strange Quark Matter Stars and Neutron Stars

    Full text link
    The general statement that hypothetical strange (quark matter) stars cool more rapidly than neutron stars is investigated in greater detail. It is found that the direct Urca process could be forbidden not only in neutron stars but also in strange stars. In this case, strange stars are slowly cooling, and their surface temperatures are more or less indistinguishable from those of slowly cooling neutron stars. Furthermore the case of enhanced cooling is reinvestigated. It shows that strange stars cool significantly more rapidly than neutron stars within the first 30\sim 30 years after birth. This feature could become particularly interesting if continued observation of SN 1987A would reveal the temperature of the possibly existing pulsar at its center.Comment: 9 pages, LaTeX (aas-style file), 2 ps-figures. To be published in ApJ Letter

    Probing Teichoic Acid Genetics with Bioactive Molecules Reveals New Interactions among Diverse Processes in Bacterial Cell Wall Biogenesis

    Get PDF
    SummaryThe bacterial cell wall has been a celebrated target for antibiotics and holds real promise for the discovery of new antibacterial chemical matter. In addition to peptidoglycan, the walls of Gram-positive bacteria contain large amounts of the polymer teichoic acid, covalently attached to peptidoglycan. Recently, wall teichoic acid was shown to be essential to the proper morphology of Bacillus subtilis and an important virulence factor for Staphylococcus aureus. Additionally, recent studies have shown that the dispensability of genes encoding teichoic acid biosynthetic enzymes is paradoxical and complex. Here, we report on the discovery of a promoter (PywaC), which is sensitive to lesions in teichoic acid synthesis. Exploiting this promoter through a chemical-genetic approach, we revealed surprising interactions among undecaprenol, peptidoglycan, and teichoic acid biosynthesis that help explain the complexity of teichoic acid gene dispensability. Furthermore, the new reporter assay represents an exciting avenue for the discovery of antibacterial molecules

    Thermal Evolution of Compact Stars

    Get PDF
    A collection of modern, field-theoretical equations of state is applied to the investigation of cooling properties of compact stars. These comprise neutron stars as well as hypothetical strange matter stars, made up of absolutely stable 3-flavor strange quark matter. Various uncertainties in the behavior of matter at supernuclear densities, e.g., hyperonic degrees of freedom, behavior of coupling strengths in matter, pion and meson condensation, superfluidity, transition to quark matter, absolute stability of strange quark matter, and last but not least the many-body technique itself are tested against the body of observed cooling data.Comment: 41 pages, revised versio

    Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.

    Get PDF
    To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntington's disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples from HD knock-in mice with increasing CAG repeat lengths. We found repeat length-dependent transcriptional signatures to be prominent in the striatum, less so in cortex, and minimal in the liver. Coexpression network analyses revealed 13 striatal and 5 cortical modules that correlated highly with CAG length and age, and that were preserved in HD models and sometimes in patients. Top striatal modules implicated mHtt CAG length and age in graded impairment in the expression of identity genes for striatal medium spiny neurons and in dysregulation of cyclic AMP signaling, cell death and protocadherin genes. We used proteomics to confirm 790 genes and 5 striatal modules with CAG length-dependent dysregulation at the protein level, and validated 22 striatal module genes as modifiers of mHtt toxicities in vivo
    corecore