28 research outputs found

    Transition to Reconstructibility in Weakly Coupled Networks

    Full text link
    Across scientific disciplines, thresholded pairwise measures of statistical dependence between time series are taken as proxies for the interactions between the dynamical units of a network. Yet such correlation measures often fail to reflect the underlying physical interactions accurately. Here we systematically study the problem of reconstructing direct physical interaction networks from thresholding correlations. We explicate how local common cause and relay structures, heterogeneous in-degrees and non-local structural properties of the network generally hinder reconstructibility. However, in the limit of weak coupling strengths we prove that stationary systems with dynamics close to a given operating point transition to universal reconstructiblity across all network topologies.Comment: 15 pages, 4 figures, supplementary material include

    How Precise is the Timing of Action Potentials?

    Get PDF

    Sequential Desynchronization in Networks of Spiking Neurons with Partial Reset

    Full text link
    The response of a neuron to synaptic input strongly depends on whether or not it has just emitted a spike. We propose a neuron model that after spike emission exhibits a partial response to residual input charges and study its collective network dynamics analytically. We uncover a novel desynchronization mechanism that causes a sequential desynchronization transition: In globally coupled neurons an increase in the strength of the partial response induces a sequence of bifurcations from states with large clusters of synchronously firing neurons, through states with smaller clusters to completely asynchronous spiking. We briefly discuss key consequences of this mechanism for more general networks of biophysical neurons

    Synchronisation, Neuronale Erregbarkeit und Informations-Fluss in Netzwerken Neuronaler Oszillatoren

    No full text
    Ein omniprĂ€sentes PhĂ€nomen in der kollektiven Dynamik komplexer neuronaler Netzwerke ist Synchronisation, die sich in der gleichzeitigen Erzeugung von Aktionspotentialen von Neuronen und auf grĂ¶ĂŸeren rĂ€umlichen Skalen in kollektiven Oszillationen neuronaler Ensembles manifestiert. Synchrone neuronale AktivitĂ€t ist mit verschiedenen Gehirnfunktionen, neuronaler Informationsverarbeitung und Kodierung verbunden, steht aber auch in Zusammenhang mit Gehirnkrankheiten. Regulierende Mechanismen im Gehirn agieren typischerweise lokal, indem sie die dynamischen Eigenschaften einzelner Neuronen oder deren synaptische Verbindungen Ă€ndern. Ein detailliertes VerstĂ€ndnis wie solche lokalen Eigenschaften die kollektive Synchronisationsdynamik beeinflussen ist daher eine hilfreiche Grundlage fĂŒr das Studium pathologischer Synchronisation oder der InformationsĂŒbertragung im Gehirn. In dieser Dissertation untersuchen wir theoretisch und experimentell wie lokale Eigenschaften von Neuronen oder Gruppen von Neuronen netzwerkweite Synchronisation, dynamische Ensemblebildung und InformationsĂŒbertragung beeinflussen. Im ersten Teil dieser Arbeit fĂŒhren wir ein generelles Modell fĂŒr plus-gekoppelte neuronale Schwelleneinheiten mit einem partiellen Reset ein, das die Antworteigenschaften von Neuronen auf ĂŒberschwellige Stimulation erfasst. Wir zeigen analytisch, dass dieser partielle Reset eine Sequenz von desynchronisierenden Bifurkationen in der kollektiven Netzwerkdynamik kontrolliert. Es wird ein mathematischer Formalismus zur Analyse der Phasenraumstruktur von puls-gekoppelten Einheiten mit zeit-verzögerten Interaktionen entwickelt. Damit zeigen wir, dass der partielle Reset eine neuartige Bifurkation von instabilen Attraktor-Netzwerken, die in Systemen mit verzögerter Puls-Kopplung vorherrschen, zu heteroklinen Netzwerkstrukturen induziert. Im zweiten Teil der Dissertation zeigen wir, dass die neuronale Erregbarkeit, d.h. die intrinsische Dynamik zur Erzeugung von Aktionspotentialen, dynamisch geĂ€ndert werden kann. FĂŒr die allgemeine Klasse von leitfĂ€higkeitsbasierten Modellen leiten wir analytisch die Bifurkationsstruktur des Überganges in der neuronalen Erregbarkeit her und zeigen, dass er durc

    Partial Reset in Pulse-coupled Oscillators

    No full text
    Pulse-coupled threshold units serve as paradigmatic models for a wide range of complex systems. When the state variable of a unit crosses a threshold, the unit sends a pulse that is received by other units, thereby mediating the interactions. At the same time, the state variable of the sending unit is reset. Here we present and analyze a class of pulse-coupled oscillators where the reset may be partial only and is mediated by a partial reset function. Such a partial reset characterizes intrinsic physical or biophysical features of a unit, e.g., resistive coupling between dendrite and soma of compartmental neurons; at the same time the description in terms of a partial reset enables a rigorous mathematical investigation of the collective network dynamics. The partial reset acts as a desynchronization mechanism. For NN all-to-all pulse-coupled oscillators an increase in the strength of the partial reset causes a sequence of desynchronizing bifurcations from the fully synchronous state via states with large clusters of synchronized units through states with smaller clusters to complete asynchrony. By considering inter- and intracluster stability we derive sufficient and necessary conditions for the existence and stability of cluster states on the partial reset function and on the intrinsic dynamics of the oscillators. For a specific class of oscillators we obtain a rigorous derivation of all N−1N-1 bifurcation points and demonstrate that already arbitrarily small changes in the reset function may produce the entire sequence of bifurcations. We illustrate that the transition is robust against structural perturbations and prevails in the presence of heterogeneous network connectivity and changes in the intrinsic oscillator dynamics

    Dataset for Mapping the fine scale organization of the vasculature

    No full text
    These are full datasets used in the analysis of the manuscript "Mapping the fine scale organization and plasticity of the vasculature"
    corecore