176 research outputs found
Mitoxantrone Loaded Superparamagnetic Nanoparticles for Drug Targeting: A Versatile and Sensitive Method for Quantification of Drug Enrichment in Rabbit Tissues Using HPLC-UV
In medicine, superparamagnetic nanoparticles bound to chemotherapeutics are currently investigated for their feasibility in local tumor therapy. After intraarterial application, these particles can be accumulated in the targeted area by an external magnetic field to increase the drug concentration in the region of interest (Magnetic-Drug-Targeting). We here present an analytical method (HPLC-UV), to detect pure or ferrofluid-bound mitoxantrone in a complex matrix even in trace amounts in order to perform biodistribution studies. Mitoxantrone could be extracted in high yields from different tissues. Recovery of mitoxantrone in liver tissue (5000âng/g) was 76 ± 2%. The limit of quantification of mitoxantrone standard was 10âng/mL ±12%. Validation criteria such as linearity, precision, and stability were evaluated in ranges achieving the FDA requirements. As shown for pilot samples, biodistribution studies can easily be performed after application of pure or ferrofluid-bound mitoxantrone
Magnetic Accumulation of SPIONs under Arterial Flow Conditions: Effect of Serum and Red Blood Cells
Magnetic drug targeting utilizes an external magnetic field to target superparamagnetic iron oxide nanoparticles (SPIONs) and their cargo to the diseased vasculature regions. In the arteries, the flow conditions affect the behavior of magnetic particles and the efficacy of their accumulation. In order to estimate the magnetic capture of SPIONs in more physiological-like settings, we previously established an ex vivo model based on human umbilical cord arteries. The artery model was employed in our present studies in order to analyze the effects of the blood components on the efficacy of magnetic targeting, utilizing 2 types of SPIONs with different physicochemical characteristics. In the presence of freshly isolated human plasma or whole blood, a strong increase in iron content measured by AES was observed for both particle types along the artery wall, in parallel with clotting activation due to endogenous thrombin generation in plasma. Subsequent studies therefore utilized SPION suspensions in serum and washed red blood cells (RBCs) at hematocrit 50%. Interestingly, in contrast to cell culture medium suspensions, magnetic accumulation of circulating SPION-3 under the external magnet was achieved in the presence of RBCs. Taken together, our data shows that the presence of blood components affects, but does not prevent, the magnetic accumulation of circulating SPIONs
Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction
Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Platform for the Targeted Multimodal Tumor Therapy
Standard cancer treatments involve surgery, radiotherapy, chemotherapy, and immunotherapy. In clinical practice, the respective drugs are applied orally or intravenously leading to their systemic circulation in the whole organism. For chemotherapeutics or immune modulatory agents, severe side effects such as immune depression or autoimmunity can occur. At the same time the intratumoral drug doses are often too low for effective cancer therapy. Since monotherapies frequently cannot cure cancer, due to their synergistic effects multimodal therapy concepts are applied to enhance treatment efficacy. The targeted delivery of drugs to the tumor by employment of functionalized nanoparticles might be a promising solution to overcome these challenges. For multimodal therapy concepts and individualized patient care nanoparticle platforms can be functionalized with compounds from various therapeutic classes (e.g. radiosensitizers, phototoxic drugs, chemotherapeutics, immune modulators). Superparamagnetic iron oxide nanoparticles (SPIONs) as drug transporters can add further functionalities, such as guidance or heating by external magnetic fields (Magnetic Drug Targeting or Magnetic Hyperthermia), and imaging-controlled therapy (Magnetic Resonance Imaging)
Biophysical Characterization of (Silica-coated) Cobalt Ferrite Nanoparticles for Hyperthermia Treatment
Magnetic hyperthermia is a technique that describes the heating of material through an external magnetic field. Classic hyperthermia is a medical condition where the human body overheats, being usually triggered by a heat stroke, which can lead to severe damage to organs and tissue due to the denaturation of cells. In modern medicine, hyperthermia can be deliberately induced to specified parts of the body to destroy malignant cells. Magnetic hyperthermia describes the way that this overheating is induced and it has the inherent advantage of being a minimal invasive method when compared to traditional surgery methods. This work presents a particle system that offers huge potential for hyperthermia treatments, given its good loss value, i.e., the particles dissipate a lot of heat to their surroundings when treated with an ac magnetic field. The measurements were performed in a low-cost custom hyperthermia setup. Additional toxicity assessments on Jurkat cells show a very low short-term toxicity on the particles and a moderate low toxicity after two days due to the prevalent health concerns towards nanoparticles in organisms
Surface modifcation of SPIONs in PHBV microspheres for biomedical applications
Surface modification of superparamagnetic iron oxide nanoparticles (SPIONs) has been introduced with lauric acid and oleic acid via co-precipitation and thermal decomposition methods, respectively. This modification is required to increase the stability of SPIONs when incorporated in hydrophobic, biodegradable and biocompatible polymers such as poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In this work, the solid-in-oil-in-water (S/O/W) emulsion-solvent extraction/evaporation method was utilized to fabricate magnetic polymer microspheres incorporating SPIONs in PHBV. The prepared magnetic PHBV microspheres exhibited particle sizes <1â”m. The presence of functional groups of lauric acid, oleic acid and iron oxide in the PHBV microspheres was confirmed by Fourier Transform Infrared spectroscopy (FTIR). X-ray diffraction (XRD) analysis was performed to further confirm the success of the combination of modified SPIONs and PHBV. Thermogravimetric analysis (TGA) indicated that PHBV microspheres were incorporated with SPIONsLauric as compared with SPIONsOleic. This was also proven via magnetic susceptibility measurement as a higher value of this magnetic property was detected for PHBV/SPIONsLauric microspheres. It was revealed that the magnetic PHBV microspheres were non-toxic when assessed with mouse embryotic fibroblast cells (MEF) at different concentrations of microspheres. These results confirmed that the fabricated magnetic PHBV microspheres are potential candidates for use in biomedical applications
Solâgel derived BâOââCaO borate bioactive glasses with hemostatic, antibacterial and pro-angiogenic activities
Solâgel borate bioactive glasses (BGs) are promising ion-releasing
biomaterials for wound healing applications. Here, we report
the synthesis of a series of binary BâOââCaO borate BGs (CaO
ranging from 50 to 90 mol%) using a solâgel-based method. The
influence of CaO content in BâOââCaO borate BG on morphology,
structure and ion release behavior was investigated in detail.
Reduced dissolution (ion release) and crystallization could be
observed in borate BGs when CaO content increased, while the
morphology was not significantly altered by increasing CaO
content. Our results evidenced that the ion release behavior of
borate BGs could be tailored by tuning the BâOâ/CaO molar ratio.
We also evaluated the in vitro cytotoxicity, hemostatic, antibacterial
and angiogenic activities of borate BGs. Cytocompatibility was validated for all borate BGs. However, borate BGs exhibited
composition-dependent hemostatic, antibacterial and angiogenic activities. Generally, higher contents of Ca in borate BGs facilitated
hemostatic activity, while higher contents of BâOâ were beneficial for pro-angiogenic activity. The synthesized solâgel-derived borate
BGs are promising materials for developing advanced wound healing dressings, given their fast ion release behavior and favorable
hemostatic, antibacterial and angiogenic activities
Recommended from our members
Magnetically responsive composites: electron beam assisted magnetic nanoparticle arrest in gelatin hydrogels for bioactuation
As emerging responsive materials, ferrogels have become highly attractive for biomedical and technical applications in terms of soft actuation, tissue engineering or controlled drug release. In the present study, bioderived ferrogels were fabricated and successfully deformed within moderate, heterogeneous magnetic fields. Synthesis was realized by arresting iron oxide nanoparticles in porcine gelatin by introduction of covalent crosslinks via treatment with energetic electrons for mesh refinement. This approach also allows for tuning thermal and mechanical stability of the gelatin matrix. Operating the bioferrogel in compression, magnetic forces on the nanoparticles are counterbalanced by the stiffness of the hydrogel matrix that is governed by a shift in thermodynamic equilibrium of swelling, as derived in the framework of osmosis. As gelatin and iron oxide nanoparticles are established as biocompatible constituents, these findings promise potential for in vivo use as contactless mechanical transducers
Hemocompatibility and Biomedical Potential of Poly(Gallic Acid) Coated Iron Oxide Nanoparticles for Theranostic Use
Polyacid covered core-shell iron oxide nanoparticles were designed for potential use in biomedicine with special
attention to theranostics - magnetic resonance imaging (MRI), magnetic hyperthermia and magnetic drug targeting. The magnetite nanoparticles coated with a gallic acid shell polymerized in situ on the nanoparticle surface (PGA@MNPs) were tested for hemocompatibility in blood, sedimentation rate, blood smear and blood cell viability experiments and for antioxidant capacity in Jurkat cells in the presence of H2O2 as reactive oxygen species. No signs of interaction of the nanoparticles with whole blood cells were found. In addition, the PGA@MNPs reduced significantly the oxidative stress mediated by H2O2 supporting earlier findings of MTT tests, namely, the improvement of cell viability in their presence. The in vitro tests revealed that PGA@MNPs are not only biocompatible but also bioactive. Preliminary experiments
revealed that the nanoparticles are especially efficient MRI and magnetic hyperthermia agents. The r2 relaxivity was found to be one of the highest among published values (387 mM-1s-1) and they possess a relatively significant specific absorption rate (SAR) value of 11 W/g magnetite
- âŠ