110 research outputs found
Putative regulation of macrophage-mediated inflammation by catestatin
Catestatin (CST) is a bioactive cleavage product of the neuroendocrine prohormone chromogranin A (CgA). Recent findings show that CST can exert anti-inflammatory and antiadrenergic effects by suppressing the inflammatory actions of mammalian macrophages. However, recent findings also suggest that macrophages themselves are major CST producers. Here, we hypothesize that macrophages produce CST in an inflammation-dependent manner and thereby might self-regulate inflammation in an autocrine fashion. CST is associated with pathological conditions hallmarked by chronic inflammation, including autoimmune, cardiovascular, and metabolic disorders. Since intraperitoneal injection of CST in mouse models of diabetes and inflammatory bowel disease has been reported to be beneficial for mitigating disease, we posit that CST should be further investigated as a candidate target for treating certain inflammatory diseases
The anti-inflammatory peptide Catestatin blocks chemotaxis
Increased levels of the anti-inflammatory peptide Catestatin (CST), a cleavage product of the pro-hormone chromogranin A, correlate with less severe outcomes in hypertension, colitis, and diabetes. However, it is unknown how CST reduces the infiltration of monocytes and macrophages (Mϕs) in inflamed tissues. Here, it is reported that CST blocks leukocyte migration toward inflammatory chemokines. By in vitro and in vivo migration assays, it is shown that although CST itself is chemotactic, it blocks migration of monocytes and neutrophils to inflammatory attracting factor CC-chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 2 (CXCL2). Moreover, it directs CX3CR1+ Mϕs away from pancreatic islets. These findings suggest that the anti-inflammatory actions of CST are partly caused by its regulation of chemotaxis
Chromogranin A regulates gut permeability via the antagonistic actions of its proteolytic peptides
AIM: A 'leaky' gut barrier has been implicated in the initiation and progression of a multitude of diseases, e.g., inflammatory bowel disease (IBD), irritable bowel syndrome, and celiac disease. Here we show how pro-hormone Chromogranin A (CgA), produced by the enteroendocrine cells, and Catestatin (CST: hCgA352-372 ), the most abundant CgA-derived proteolytic peptide, affect the gut barrier. METHODS: Colon tissues from region-specific CST-knockout (CST-KO) mice, CgA-knockout (CgA-KO) and WT mice were analyzed by immunohistochemistry, Western blot, ultrastructural and flowcytometry studies. FITC-dextran assays were used to measure intestinal barrier function. Mice were supplemented with CST or CgA fragment pancreastatin (PST: CgA250-301 ). The microbial composition of cecum was determined. CgA and CST levels were measured in blood of IBD patients. RESULTS: Plasma levels of CST were elevated in IBD patients. CST-KO mice displayed (i) elongated tight, adherens junctions and desmosomes similar to IBD patients, (ii) elevated expression of Claudin 2, and (iii) gut inflammation. Plasma FITC-dextran measurements showed increased intestinal paracellular permeability in the CST-knockout mice. This correlated with a higher ratio of Firmicutes to Bacteroidetes, a dysbiotic pattern commonly encountered in various diseases. Supplementation of CST-knockout mice with recombinant CST restored paracellular permeability and reversed inflammation, whereas CgA-knockout mice supplementation with CST and/or PST in CgA-KO mice showed that intestinal paracellular permeability is regulated by the antagonistic roles of these two peptides: CST reduces and PST increases permeability. CONCLUSION: The pro-hormone CgA regulates the intestinal paracellular permeability. CST is both necessary and sufficient to reduce permeability and primarily acts by antagonizing PST
Pleiotropic functions of the tumor- and metastasis-suppressing Matrix Metalloproteinase-8 in mammary cancer in MMTV-PyMT transgenic mice
Matrix metalloproteinase-8 (MMP-8; neutrophil collagenase) is an important regulator of innate immunity which has onco-suppressive actions in numerous tumor types
Increased Recruitment but Impaired Function of Leukocytes during Inflammation in Mouse Models of Type 1 and Type 2 Diabetes
BACKGROUND: Patients suffering from diabetes show defective bacterial clearance. This study investigates the effects of elevated plasma glucose levels during diabetes on leukocyte recruitment and function in established models of inflammation. METHODOLOGY/PRINCIPAL FINDINGS: Diabetes was induced in C57Bl/6 mice by intravenous alloxan (causing severe hyperglycemia), or by high fat diet (moderate hyperglycemia). Leukocyte recruitment was studied in anaesthetized mice using intravital microscopy of exposed cremaster muscles, where numbers of rolling, adherent and emigrated leukocytes were quantified before and during exposure to the inflammatory chemokine MIP-2 (0.5 nM). During basal conditions, prior to addition of chemokine, the adherent and emigrated leukocytes were increased in both alloxan- (62±18% and 85±21%, respectively) and high fat diet-induced (77±25% and 86±17%, respectively) diabetes compared to control mice. MIP-2 induced leukocyte emigration in all groups, albeit significantly more cells emigrated in alloxan-treated mice (15.3±1.0) compared to control (8.0±1.1) mice. Bacterial clearance was followed for 10 days after subcutaneous injection of bioluminescent S. aureus using non-invasive IVIS imaging, and the inflammatory response was assessed by Myeloperoxidase-ELISA and confocal imaging. The phagocytic ability of leukocytes was assessed using LPS-coated fluorescent beads and flow cytometry. Despite efficient leukocyte recruitment, alloxan-treated mice demonstrated an impaired ability to clear bacterial infection, which we found correlated to a 50% decreased phagocytic ability of leukocytes in diabetic mice. CONCLUSIONS/SIGNIFICANCE: These results indicate that reduced ability to clear bacterial infections observed during experimentally induced diabetes is not due to reduced leukocyte recruitment since sustained hyperglycemia results in increased levels of adherent and emigrated leukocytes in mouse models of type 1 and type 2 diabetes. Instead, decreased phagocytic ability observed for leukocytes isolated from diabetic mice might account for the impaired bacterial clearance
State-of-the-art microscopy to understand islets of Langerhans:what to expect next?
The discovery of Langerhans and microscopic description of islets in the pancreas were crucial steps in the discovery of insulin. Over the past 150 years, many discoveries in islet biology and type 1 diabetes have been made using powerful microscopic techniques. In the past decade, combination of new probes, animal and tissue models, application of new biosensors and automation of light and electron microscopic methods and other (sub)cellular imaging modalities have proven their potential in understanding the beta cell under (patho)physiological conditions. The imaging evolution, from fluorescent jellyfish to real-time intravital functional imaging, the revolution in automation and data handling and the increased resolving power of analytical imaging techniques are now converging. Here, we review innovative approaches that address islet biology from new angles by studying cells and molecules at high spatiotemporal resolution and in live models. Broad implementation of these cellular imaging techniques will shed new light on cause/consequence of (mal)function in islets of Langerhans in the years to come
Influence of microenvironment on engraftment of transplanted β-cells
Pancreatic islet transplantation into the liver provides a possibility to treat selected patients with brittle type 1 diabetes mellitus. However, massive early β-cell death increases the number of islets needed to restore glucose homeostasis. Moreover, late dysfunction and death contribute to the poor long-term results of islet transplantation on insulin independence. Studies in recent years have identified early and late challenges for transplanted pancreatic islets, including an instant blood-mediated inflammatory reaction when exposing human islets to the blood microenvironment in the portal vein and the low oxygenated milieu of islets transplanted into the liver. Poor revascularization of remaining intact islets combined with severe changes in the gene expression of islets transplanted into the liver contributes to late dysfunction. Strategies to overcome these hurdles have been developed, and some of these interventions are now even tested in clinical trials providing a hope to improve results in clinical islet transplantation. In parallel, experimental and clinical studies have, based on the identified problems with the liver site, evaluated the possibility of change of implantation organ in order to improve the results. Site-specific differences clearly exist in the engraftment of transplanted islets, and a more thorough characterization of alternative locations is needed. New strategies with modifications of islet microenvironment with cells and growth factors adhered to the islet surface or in a surrounding matrix could be designed to intervene with site-specific hurdles and provide possibilities to improve future results of islet transplantation
- …