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ART I C L E

INFLAMMATION, EXTRACELLULAR MEDIATORS AND EFFECTOR MOLECULES
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Abstract

Increased levels of the anti-inflammatory peptide Catestatin (CST), a cleavage product

of the pro-hormone chromogranin A, correlate with less severe outcomes in hyperten-

sion, colitis, and diabetes. However, it is unknown how CST reduces the infiltration of

monocytes and macrophages (Mϕs) in inflamed tissues. Here, it is reported that CST

blocks leukocyte migration toward inflammatory chemokines. By in vitro and in vivo

migration assays, it is shown that althoughCST itself is chemotactic, it blocksmigration

of monocytes and neutrophils to inflammatory attracting factor CC-chemokine ligand

2 (CCL2) and C-X-C motif chemokine ligand 2 (CXCL2). Moreover, it directs CX3CR1
+

Mϕs away from pancreatic islets. These findings suggest that the anti-inflammatory

actions of CST are partly caused by its regulation of chemotaxis.
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1 INTRODUCTION

As an immunological response to inflammation, leukocytes are

attracted to inflamed tissues by chemokines such as CC-chemokine

ligand 2 (CCL2, a.k.a. MCP-1) and C-X-C motif chemokine ligand 2

(CXCL2, a.k.a.MIP-2).1 However, to avoid anexcessive response, leuko-

cyte infiltration should be halted for the resolution of inflammation,

but not all the mechanisms that govern this are known.2 Here, we

addressed the potential chemotactic effect of the chromogranin A

(CgA)-derived peptide catestatin (CST: hCgA352-372).
3,4
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CgA and its bioactive peptide CST are produced by endocrine cells,

for example, chromaffin and pancreatic beta cells, and bone-marrow-

derived cells such as macrophages (Mϕs).5–7 While the concentra-

tions of CST in circulation are in the low nM range, concentrations

in the µM range were detected in mouse tissues.3,8–10 These much

higher concentrations indicate that CST exerts its effects locally. CST

has primarily anti-inflammatory properties, as CST reduces inflamma-

tion in cardiac and chronic inflammatory diseases and CST-knockout

mice display increased inflammation in the intestine, heart, and adrenal

gland.7,8,11,12 However, CST has also pro-inflammatory effects as it
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F IGURE 1 CST is weakly chemotactic. (A) Scheme showing set-up of Gradientechmigration assay. Two syringes filled with buffer±
chemoattractant were connected to the device (green) to create a flow (y-direction) and perpendicular (x) cytokine gradient. The inset shows the
migration of monocytes along with the flow and towards the chemoattractant. (B) Representative tracks of humanmonocytes showing the x- and
y-movement of individual cells upon exposure to the indicated buffer, 5 µMCST or 0.5 nMCCL2. (C) Quantification of panel B (N= 3). (D) Scheme
showing set-up of cremaster muscle imaging inmice to visualize phagocyte (monocytes and neutrophils) extravasation in vivo. (E) Phagocyte
rolling velocity (top) and attachment (bottom) upon overflowing themuscle with buffer (control, gray), 0.5 nMMIP-2 (blue) or 5 µMCST (black) for
90minutes (imaged at T= 0, 30, 60, 90) (N= 3, two-way ANOVA). (F) Representative images of granulocyte attachment over time (imaged at T= 0,
30, 60, 90minutes) to the vessel wall upon only buffer, CXCL2, or CST stimulation as visualized with an antibody against Ly6G (green). *P< 0.05;
**P< 0.01; ***P< 0.001; ns: not significant
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F IGURE 2 CST blocksmigration in the aortic ringmodel promotes angiogenesis. (A) Scheme showing set-up of aortic ring assay. Aortic ring
was isolated fromCX3CR1-GFPmice and embedded adjacent to pancreatic islets in collagen I. Image shows islets (blue), CD31 (red) and CX3CR1
(green). (B) Representative images of CX3CR1-Mϕmigration upon control or CST stimulation of the aortic ring. The graph shows the percentage of
cells above (yellow) the center of mass (N= 8). (C) Representative images of vessels by CD31 labeling (red) upon control or CST stimulation of the
aortic ring. (D) Quantification of angiogenesis (illustrated in Fig. S4A). Total number of sprouts and branches (left) and their length (right) (N= 5-6,
Mann-Whitney test; *P< 0.05; **P< 0.01)

is chemotactic11,13,14 and promotes the production of inflammatory

chemokines (IL-8, CCL2-4).14 Nevertheless, administration of exoge-

nous CST reduces monocyte andMϕ infiltration in the liver, heart, and
gut in mouse models of type II diabetes, hypertension, atherosclero-

sis, and colitis.7,8,11,12,15 In a colitis model, CST also reduced granulo-

cyte infiltration in the colon.15 Finally, the adrenal gland, heart, and gut

of CST knockout mice display increased Mϕ infiltration.7,8,11,16 These

findings raise the question of howCST affects leukocyte chemotaxis.

In this study, we show that while CST itself is chemotactic, it blocks

the extravasation andmigration of phagocytes both in vitro and in vivo.

These findings support a model where the anti-inflammatory effects

of CST could be partly the result of redirecting monocytes and neu-

trophils away from the inflammation sites.

2 RESULTS & DISCUSSION

Transwell migration assays on human blood monocytes showed only a

weak chemotactic effect of CST in a broad concentration range (1 nM–

5 µM) (Supplementary Fig. S1). In line with this, human blood mono-

cytes migrated towards a high concentration of CST (5 µM) in the gra-

dientech assay, but this migration was not significant and less efficient

compared to the canonical inflammatory chemokine CCL2 (0.5 nM)

(Fig. 1A-C). To investigate the effect of CST on phagocytes in vivo,

we performed imaging of the mouse cremaster muscle to follow the

rolling of monocytes (unstained) and neutrophils (Ly6G+ stained cells

using intravenous injection of fluorescently labeled antibody against

Ly6G) (Fig. 1D).14 Upon superfusion of the muscle with CST (5 µM),
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F IGURE 3 CST blocksmigration induced by inflammatory cytokines. (A) Cremaster muscle imaging. Phagocyte attachment to vessel wall
upon overflowing themuscle with buffer (control, gray) and buffer with the chemoattractant CXCL2 (blue), CST (black), or both (red) (N= 3,
two-way ANOVA). (B) Representative images of granulocyte andmonocyte attachment at T= 90min to the vessel wall upon only buffer, CXCL2,
CST, or stimulation with both, as visualized with antibodies against Ly6G (green) and CD115 (red). (C)Monocyte (upper) and granulocyte (lower)
attachment to vessel wall upon overflowing themuscle with buffer (control, gray) and buffer with the chemoattractant CXCL2 (blue), CST (black),
or both (red). (D) Representative hematoxylin-eosin (HE) images of mouse phagocytemigration in transwell assay toward IL-8, CST, or both. (E)
Graphs displayingmigratedmouse neutrophils (left) andmonocytes (right) toward the lower compartment of the transwell assay filled with only
medium ormedium containing IL-8, CST, or both. (F) Percentages of migrated humanmonocytes toward the lower compartment of the transwell
assay filled with only medium ormedium containing CCL2, CST, or both. (G) Gradientechmigration assay. Representative x- and y-movement of
humanmonocytes exposed to opposite gradients of CST and CCL2 (N= 3). Mann-Whitney test *P< 0.05; **P< 0.01; ***P< 0.001; ****P< 0.0001;
ns: not significant

bothmonocytes andneutrophils decreased their speedandattached to

the vessel wall with similar efficiency as with the inflammatory chemo-

tactic agent CXCL2 (0.5 nM) (Fig. 1D-F; Supplementary Fig. S2A-D).

Thus, both our in vivo and in vitro migration assays support that CST is

chemotactic, although the effects in vivo in mice are stronger than for

human monocytes in vitro. Possibly, the local surroundings in the tis-

sues (e.g., epithelial cells or cytokines) enhance the chemotactic effect

of CST in vivo. These findings raise the question of howCST can reduce

the reported monocyte and granulocyte infiltration in inflamed tis-

sues such as the liver (in diet-induced obese mice), intestine (in colitis

model), heart (in hypertension model), and atheromatous plaques (in

atherosclerosis model).7,8,11,12,15

To address how CST affects Mϕ chemotaxis to inflamed tissues, we

used the aortic ring vessel model17 (Fig. 2A), which is based on the
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co-embedding of part of the aorta of Cx3cr1+/gfp transgenic mice adja-

cent to isolated pancreatic islets.18 These islets secrete chemokines,

such as vascular endothelial growth factor (VEGF)-A, resulting in the

directional Mϕmigration from the aortic ring as well as vessel growth

towards the pancreatic islets. Migration of CX3CR1
+GFP Mϕs from the

aortic ring was visualized by fluorescence microscopy19 (Fig. 2B-C;

Supplementary Fig. S3). As expected, the CX3CR1-Mϕs moved toward

the pancreatic islets in absence of CST (Figure 2B). However, perfus-

ing the aortic ring with CST (5 µM) resulted in a lower number of

CX3CR1
+GFP Mϕs migrating toward the pancreatic islets (Figure 2B),

indicating thatCSTblockeddirectionalmigration. Interestingly,wealso

observed that CST is pro-angiogenic, as it increased both the amount

and length of the sprouts and branches emanating from the aortic rings

(Fig. 2C-D; Fig. S4).

The loss of directional cell migration to the pancreatic islets might

be caused by blockage of chemokine-induced cell migration by CST.

To investigate this possibility, we performed intravital imaging of the

cremaster muscle, but this time for CST in combination with CXCL2.

This resulted in the inverse effect compared to CST or CXCL2 alone:

release of attached cells from the vessel wall and reduced migra-

tion of cells into the tissue (Fig. 3A; Supplementary Fig. S5A-C), indi-

cating that despite being chemotactic, CST blocks CXCL2 elicited

phagocyte recruitment. To confirm that CST exerts this effect on both

monocytes andneutrophils,weperformed intravital imagingof the cre-

master muscle with intravenous injection of CD115+ antibody to stain

monocytes and Ly6G+ antibody to stain neutrophils. Again, the combi-

nation of CST and CXCL2 resulted in less recruitment of both mono-

cytes (CD115+) and neutrophils (Ly6G+) compared to CST or CXCL2

alone (Fig. 3B-C).

To test if CST could also block chemotaxis to other chemokines, we

performed in vitro transwell migration assays with both human and

mouse phagocytes (Fig. 3; Supplementary Fig. S6). While IL-8 alone

attracted mouse neutrophils as expected,20 IL-8 in combination with

CST blocked the neutrophil migration to the lower compartment of

the transwell (Fig. 3D and E). The combination of IL-8 and CST did

not affect the migration of human monocytes (Supplementary Fig.

S6D). CST did not block migration of mouse phagocytes and human

monocytes towards the chemoattractive peptide N-formyl-methionyl-

leucyl-phenylalanine (fMLP) (Supplementary Fig. S6A-C).

Another factor that can influence immune cell migration is their

exposure to microbial agents, such as lipopolysaccharide (LPS), which

induce their activation.21 To determine whether pre-treatment of the

cells with LPS or CST can influence the blocking effect of CST, we pre-

stimulated human monocytes 30 minutes with LPS or CST before per-

forming the in vitro transwell migration assays (Supplementary Fig.

S7). Again, we observed that CST could block CCL2-inducedmonocyte

migration, and, althoughnot significant, this effect did not seemaltered

by pretreatment of the cells with LPS or CST (Fig. 3F; Supplementary

Fig. S7B). To confirm the observed block of chemotaxis in humanmono-

cytes by CST, we performed an in vitro gradientech migration assay

with a gradient of CCL2 in presence of CST (Fig. 3G). Similar to our

findings with the intravital imaging, CST blocked monocyte migration

toward CCL2.

Our findings indicate that CST counteracts the chemoattraction

of leukocytes by inflammatory chemokines CCL2, CXCL2, and IL-8.

This could contribute to the previously observed reduced immune

infiltrate in the liver, heart, and gut in mouse models of type II dia-

betes, hypertension, atherosclerosis, and colitis upon treatment with

CST.7,8,11,12,15 However, CST has been reported to promote the pro-

duction of chemokines14 and we confirmed previous findings that CST

is chemotactic itself,11,13,14 indicating that the regulation of chemo-

taxis by CST is complex. To understand this regulation, the receptor(s)

for CST needs to be identified. We speculate that this might be a G-

protein coupled receptor (GPCR), since GPCRs are actively involved

in leukocyte migration22 and are widely expressed in all cell types

responsive to CST (e.g., monocytes,13 neutrophils,23,24 Mϕs,7,8,11,12,15

endothelial,12,25 and mast cells).14 Moreover, CCL2, CXCL2, and IL-8

all signal via GPCRs.26 Possibly, CST treatment causes a heterologous

desensitization to these chemoattractants.

Another open question is how the chemotactic properties of CST

are regulated in vivo. CgA, the precursor of CST, is co-released with

catecholamines by neuroendocrine cells4,27–29 suggesting that these

cells might prevent or limit immune cell infiltration in an activity-

based fashion. However, neutrophils and Mϕs also produce CST

themselves,7,23,30,31 arguing that CST might downregulate their infil-

tration in an autocrine fashion.

In any case, our data suggest that CST reduces the infiltra-

tion of monocytes and Mϕs in inflamed tissues,7,8,11,12,15 offering a

possible mechanistic explanation for the correlation of CST levels

with improved disease outcome in patients suffering from chronic

diseases.8–11,32 These findings reinforce the emerging concept that

CST could be a therapeutic target for the treatment of diseases asso-

ciated with chronic inflammation.3,7,8,11,33
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