102 research outputs found

    Arbovirus phenotype alters transmission potential

    Get PDF
    Extrinsic and environmental factors are known to affect the transmission of arthropod-borne viruses (arboviruses), including variations in the arthropod vector populations. Differences among these factors have been associated with differential transmission and are sometimes used to control the spread of an arbovirus through a vertebrate population in an effort to prevent or disrupt an outbreak. However, diversity in intrinsic viral populations, such as genetic and phenotypic variability, is not often accounted for when considering alterations in transmission. Presented in this dissertation are four experimental studies that explore the contribution of viral intrinsic factors, especially phenotypic variability, to the transmission potential of arboviruses as judged by modeling parameters such as vectorial capacity (VC) and the basic reproductive number (R0). The overall hypothesis of this research is that phenotypic differences of arboviruses alter the transmission potential of these arboviruses by conferring fitness advantages in either the vector or the vertebrate. Further, these phenotypic differences need not be large in magnitude to affect the relative transmission potential. To investigate this hypothesis, this research determined 1) whether intrinsic viral characteristics can lead to differential transmission in a given locale, 2) whether variability of viral fitness in the mosquito vector can lead to significant differential transmission potential, 3) how our newly formulated methods from our preceding aim could aid in the explanation of a currently puzzling phenomenon in the field of arbovirology, 4) whether phenotypic differences in the vertebrate host alters the potential for transmission, and 5) how identified phenotypic differences in both the vector and vertebrate hosts could act synergistically or antagonistically to alter transmission potential of arboviruses. The research in this dissertation offers a more accurate tool for assessing transmission potential in the vector, provides a new model assessing transmission potential in the vertebrate, and provides several of the necessary steps towards a more appropriate calculation of R0. Our use of R0 based on dynamic phenotypic differences provides a framework for a more dynamic formulation of transmission models, and provides an accessible framework for output validation and reporting to public health stakeholders

    A Method for Repeated, Longitudinal Sampling of Individual Aedes aegypti for Transmission Potential of Arboviruses

    Get PDF
    Mosquito-borne viruses are the cause of significant morbidity and mortality worldwide, especially in low- and middle-income countries. Assessing risk for viral transmission often involves characterization of the vector competence of vector–virus pairings. The most common determination of vector competence uses discreet, terminal time points, which cannot be used to investigate variation in transmission aspects, such as biting behavior, over time. Here, we present a novel method to longitudinally measure individual biting behavior and Zika virus (ZIKV) transmission. Individual mosquitoes were exposed to ZIKV, and from 9 to 24 days post-exposure, individuals were each offered a 180 μL bloodmeal every other day. Biting behavior was observed and characterized as either active probing, feeding, or no bite. The bloodmeal was then collected, spun down, serum collected, and tested for ZIKV RNA via qRT-PCR to determine individuals’ vector competence over time. This included whether transmission to the bloodmeal was successful and the titer of expectorated virus. Additionally, serum was inoculated onto Vero cells in order to determine infectiousness of positive recovered sera. Results demonstrate heterogeneity in not only biting patterns but expectorated viral titers among individual mosquitoes over time. These findings demonstrate that the act of transmission is a complex process governed by mosquito behavior and mosquito–virus interaction, and herein we offer a method to investigate this phenomenon

    Credit Card Usage of College Students: Evidence from Louisiana State University (Research Information Sheet #107)

    Get PDF
    In recent years, there has been a dramatic growth in credit card usage among college students. How are Louisiana State University undergraduates using credit cards? Are LSU students managing credit card debt wisely? What can LSU do to offer the appropriate kinds of help to enable students to be financially literate? These are the issues addressed in this publication.https://digitalcommons.lsu.edu/agcenter_researchinfosheets/1007/thumbnail.jp

    Development of a transmission model for dengue virus

    Get PDF
    BACKGROUND: Dengue virus (DENV) research has historically been hampered by the lack of a susceptible vertebrate transmission model. Recently, there has been progress towards such models using several varieties of knockout mice, particularly those deficient in type I and II interferon receptors. Based on the critical nature of the type I interferon response in limiting DENV infection establishment, we assessed the permissiveness of a mouse strain with a blunted type I interferon response via gene deficiencies in interferon regulatory factors 3 and 7 (IRF3/7 (−/− −/−)) with regards to DENV transmission success. We investigated the possibility of transmission to the mouse by needle and infectious mosquito, and subsequent transmission back to mosquito from an infected animal during its viremic period. METHODS: Mice were inoculated subcutaneously with non-mouse adapted DENV-2 strain 1232 and serum was tested for viral load and cytokine production each day. Additionally, mosquitoes were orally challenged with the same DENV-2 strain via artificial membrane feeder, and then allowed to forage or naïve mice. Subsequently, we determined acquisition potential by allowing naïve mosquitoes on forage on exposed mice during their viremic period. RESULTS: Both needle inoculation and infectious mosquito bite(s) resulted in 100% infection. Significant differences between these groups in viremia on the two days leading to peak viremia were observed, though no significant difference in cytokine production was seen. Through our determination of transmission and acquisition potentials, the transmission cycle (mouse-to mosquito-to mouse) was completed. We confirmed that the IRF3/7 (−/− −/−) mouse supports DENV replication and is competent for transmission experiments, with the ability to use a non-mouse adapted DENV-2 strain. A significant finding of this study was that this IRF3/7 (−/− −/−) mouse strain was able to be infected by and transmit virus to mosquitoes, thus providing means to replicate the natural transmission cycle of DENV. CONCLUSION: As there is currently no approved vaccine for DENV, public health monitoring and a greater understanding of transmission dynamics leading to outbreak events are critical. The further characterization of DENV using this model will expand knowledge of key entomological, virological and immunological components of infection establishment and transmission events

    Theoretical Risk of Genetic Reassortment Should Not Impede Development of Live, Attenuated Rift Valley Fever (RVF) Vaccines Commentary on the Draft WHO RVF Target Product Profile

    Get PDF
    In November 2019, The World Health Organization (WHO) issued a draft set of Target Product Profiles (TPPs) describing optimal and minimally acceptable targets for vaccines against Rift Valley fever (RVF), a Phlebovirus with a three segmented genome, in both humans and ruminants. The TPPs contained rigid requirements to protect against genomic reassortment of live, attenuated vaccines (LAVs) with wild-type RVF virus (RVFV), which place undue constraints on development and regulatory approval of LAVs. We review the current LAVs in use and in development, and conclude that there is no evidence that reassortment between LAVs and wild-type RVFV has occurred during field use, that such a reassortment event if it occurred would have no untoward consequence, and that the TPPs should be revised to provide a more balanced assessment of the benefits versus the theoretical risks of reassortment

    Antibodies to Aedes spp. salivary proteins: a systematic review and pooled analysis

    Get PDF
    Aedes spp. mosquitos are responsible for transmitting several viruses that pose significant public health risks, including dengue, Zika, yellow fever, chikungunya, and West Nile viruses. However, quantifying the number of individuals at risk and their exposure to Aedes spp. mosquitos over time is challenging due to various factors. Even accurate estimation of mosquito numbers at the population level may not fully capture the fluctuations in human exposure based on factors that affect biting rates of mosquitoes. Measuring the antibody response of humans to mosquito salivary proteins (MSP) has been proposed as a method to assess human exposure to mosquito bites and predict disease risk. The presence of antibodies to MSP can be quantified using the enzyme-linked immunosorbent assay (ELISA). While there is known variability in laboratory methods, the consistency of MSP measurements across different research groups has not been quantitatively examined. Variation in laboratory protocols, antigens used, and the human populations sampled all may contribute to differences observed in measured anti-MSP responses. In this study, we conducted a systematic review of the published literature focusing on antibody responses to MSP in humans and other vertebrate hosts. Whenever possible, we extracted individual-level anti-MSP IgG data from these studies and performed a pooled analysis of quantitative outcomes obtained from ELISAs, specifically optical densities (OD). We analyzed the pooled data to quantify variation between studies and identify sample and study characteristics associated with OD scores. Our candidate list of characteristics included the type of antigen used, age of human subjects, mosquito species, population-level mosquito exposure, collection season, Köppen-Geiger climate classification, and OD reporting method. Our findings revealed that the type of antigen, population-level mosquito exposure, and Köppen-Geiger climate classification were significantly associated with ELISA values. Furthermore, we developed a classification algorithm based on OD scores, which successfully distinguished samples from individuals living in areas where a specific mosquito species was present from those where it was not, with a high degree of accuracy. The pooled analysis we conducted provides a harmonized assessment of ELISA testing, which can be utilized to refine the use of antibody responses as markers for mosquito exposure. In conclusion, our study contributes to the understanding of antibody responses to MSP and their utility as indicators of mosquito exposure. By identifying the factors associated with variations in ELISA values, we have provided valuable insights for future research and the refinement of antibody-based assessments of mosquito exposure

    Concentración de anticuerpos contra proteínas de las glándulas salivales de Aedes aegypti e historia de la exposición al virus del dengue en residentes de una zona endémica colombiana

    Get PDF
    Introduction: Mosquito salivary proteins are able to induce an antibody response that reflects the level of human-vector contact. IgG antibodies against dengue virus (DENV-IgG) are indicators of previous exposure. The risk of DENV transmission is not only associated to mosquito or dengue factors, but also to socioeconomic factors that may play an important role in the disease epidemiology.Objective: To determine the effect of the presence of Aedes aegypti mosquitos in different stages in households and the history of dengue exposure on vector-human contact determined by the level of anti-salivary protein antibodies in people living in a Colombian endemic area.Materials and methods: A pilot study of 58 households and 55 human subjects was conducted in Norte de Santander, Colombia. A questionnaire for socioeconomic factors was administered and houses were examined for the presence of Ae. aegypti specimens in the aquatic stages. The level of DENV-IgG antibodies (DENV-IgG), in addition to IgG and IgM anti-Ae. aegypti salivary gland extract (SGE) antibodies (SGE-IgG, SGE-IgM) were evaluated by ELISA using blood collected in filter paper.Results: We found a significant higher level of SGE-IgG antibodies in subjects living in houses with Ae. aegypti in aquatic stages. We also found a higher concentration of SGE-IgG antibodies in people exposed to DENV, a positive correlation between IgM-SGE and IgG-DENV and a negative correlation with IgG-SGE.Conclusion: Anti-salivary proteins antibodies are consistent with the presence of Ae. aegypti aquatic stages inside houses and DENV-IgG antibodies concentrations.Introducción. Las proteínas salivales de los mosquitos son capaces de inducir la producción de anticuerpos, lo que a su vez refleja el grado de contacto hombre-vector. Además, los anticuerpos IgG contra el virus del dengue son indicadores de una exposición previa a este virus. El riesgo de transmisión del virus del dengue está asociado no solo con factores relacionados con la biología del mosquito, o factores virales, sino también, con factores socioeconómicos, como la disponibilidad de agua en el hogar, que pueden desempeñar un papel importante durante la temporada epidémica.Objetivo. Determinar el efecto de la presencia de mosquitos Aedes aegypti en las casas y la exposición previa al virus del dengue, sobre los niveles de anticuerpos contra mosquitos en el contacto humano-vector en habitantes de un área endémica de Colombia.Materiales y métodos. Se hizo un estudio piloto de 58 casas y 55 participantes en Norte de Santander, Colombia. Se empleó un cuestionario para recopilar la información sobre los factores socioeconómicos y se examinaron las casas para detectar la presencia de sitios de cría de Ae. aegypti. Se recolectó una muestra de sangre humana total en papel de filtro y se estableció el nivel de anticuerpos IgG contra el virus del dengue, además del de los anticuerpos IgG e IgM anti-Ae. aegypti de extracto de glándula salival mediante ELISA.Resultados. Los resultados revelaron un mayor nivel de anticuerpos IgG de extracto de glándula salival en sujetos que vivían en casas con presencia de mosquitos Ae. aegypti en la fase acuática. Asimismo, se encontró una mayor concentración de anticuerpos IgG de extracto de glándula salival en personas previamente expuestas al virus del dengue. Los resultados evidenciaron una correlación positiva significativa entre los niveles de IgM de extracto de glándula salival y los de IgG anti-virus del dengue de extracto de glándula salival, y una correlación negativa con los de IgG de extracto de glándula salival , aunque esta última no fue significativa.Conclusión. La concentración de anticuerpos fue mayor en quienes vivían en casas con estadios acuáticos de Ae. aegypti, como también en las personas con anticuerpos IgG anti-virus del dengue
    • …
    corecore