23 research outputs found

    Erythropoietin stimulates proliferation of human renal carcinoma cells

    Get PDF
    Erythropoietin stimulates proliferation of human renal carcinoma cells.BackgroundWe reported recently that normal human, rat, and mouse tubular cells express authentic erythropoietin-receptors (EPO-R) through which EPO stimulates mitogenesis. The present study examines whether EPO could elicit such a proliferative and thereby potentially detrimental response in cells of human renal-cell carcinoma (RCC).MethodsNephrectomy samples were screened from patients with RCC (one chromophilic, two clear cell) as well as cell lines of human (Caki-2, 786-0) and mouse (RAG) renal adenocarcinomas for expression of EPO-R transcripts and protein. Cells were further tested for specific 125I-EPO binding and mitogenic response to EPO.ResultsAuthentic EPO-R transcripts and protein (approximately 72 kD) were detected in renal tumors and cell lines. Tumors showed low-level EPO expression, while cell lines did not. In cells, specific 125I-EPO binding to a single class of EPO-R (apparent Kd 1.3 to 1.4 nmol/L, Bmax 2.2 to 2.6 fmol/mg protein) was observed. EPO stimulated cell proliferation dose dependently, and the individual mitogenic effects of either EPO or 10% newborn calf serum were markedly amplified when both were coadministered.ConclusionThese data are the first to demonstrate, to our knowledge, that human RCCs express EPO-R message and protein and that receptor activation stimulates their proliferation in vitro. If these mitogenic effects of EPO are also operative in patients with RCC, endogenous EPO or its administration for the treatment of anemia could potentially hasten proliferation of renocellular malignancies

    Human, rat, and mouse kidney cells express functional erythropoietin receptors

    Get PDF
    Cells of human, rat, and mouse kidney express functional erythropoietin receptors.BackgroundErythropoietin (EPO), secreted by fibroblast-like cells in the renal interstitium, controls erythropoiesis by regulating the survival, proliferation, and differentiation of erythroid progenitor cells. We examined whether renal cells that are exposed to EPO express EPO receptors (EPO-R) through which analogous cytokine responses might be elicited.MethodsNormal human and rat kidney tissue and defined cell lines of human, rat, and mouse kidney were screened, using reverse transcription-polymerase chain reaction, nucleotide sequencing, ligand binding, and Western blotting, for the expression of EPO-R. EPO's effects on DNA synthesis and cell proliferation were also examined.ResultsEPO-R transcripts were readily detected in cortex, medulla, and papilla of human and rat kidney, in mesangial (human, rat), proximal tubular (human, mouse), and medullary collecting duct cells (human). Nucleotide sequences of EPO-R cDNAs from renal cells were identical to those of erythroid precursor cells. Specific 125I-EPO binding revealed a single class of high- to intermediate-affinity EPO-Rs in each tested cell line (kD 96 pM to 1.4 nM; Bmax 0.3 to 7.0 fmol/mg protein). Western blots of murine proximal tubular cell membranes revealed an EPO-R protein of approximately 68 kDa. EPO stimulated DNA synthesis and cell proliferation dose dependently.ConclusionThis is the first direct demonstration, to our knowledge, that renal cells possess EPO-Rs through which EPO stimulates mitogenesis. This suggests currently unrecognized cytokine functions for EPO in the kidney, which may prove beneficial in the repair of an injured kidney while being potentially detrimental in renal malignancies

    β-MSCs: Successful fusion of MSCs with β-cells results in a β-cell like phenotype

    Get PDF
    Bone marrow mesenchymal stromal cells (MSC) have anti-inflammatory, antiapoptotic and immunosuppressive properties and are a potent source for cell therapy. Cell fusion has been proposed for rapid generation of functional new reprogrammed cells. In this study, we aimed to establish a fusion protocol of bone marrow-derived human MSCs with the rat beta-cell line (INS-1E) as well as human isolated pancreatic islets in order to generate insulin producing beta-MSCs as a cell-based treatment for diabetes. Human eGFP+ puromycin+ MSCs were co-cultured with either stably mCherryexpressing rat INS-1E cells or human dispersed islet cells and treated with phytohemagglutinin (PHA-P) and polyethylene glycol (PEG) to induce fusion. MSCs and fused cells were selected by puromycin treatment. With an improved fusion protocol, 29.8 ± 2.9% of all MSCs were β-MSC heterokaryons based on double positivity for mCherry and eGFP. After fusion and puromycin selection, human NKX6.1 and insulin as well as rat Neurod1, Nkx2.2, MafA, Pdx1 and Ins1 mRNA were highly elevated in fused human MSC/INS-1E cells, compared to the mixed control population. Such induction of betacell markers was confirmed in fused human MSC/human dispersed islet cells, which showed elevated NEUROD1, NKX2.2, MAFA, PDX1 and insulin mRNA compared to the mixed control. Fused cells had higher insulin content and improved insulin secretion compared to the mixed control and insulin positive beta-MSCs also expressed nuclear PDX1. We established a protocol for fusion of human MSCs and beta cells, which resulted in a beta cell like phenotype. This could be a novel tool for cell-based therapies of diabetes
    corecore