41 research outputs found

    The impact of corporate social responsibility disclosure on financial performance : evidence from the GCC Islamic banking sector.

    Get PDF
    This paper examines the relationship between corporate social responsibility (CSR) and financial performance for Islamic banks in the Gulf Cooperation Council (GCC) region over the period 2000–2014 by generating CSR-related data through disclosure analysis of the annual reports of the sampled banks. The findings of this study indicate that there is a significant positive relationship between CSR disclosure and the financial performance of Islamic banks in the GCC countries. The results also show a positive relationship between CSR disclosure and the future financial performance of GCC Islamic banks, potentially indicating that current CSR activities carried out by Islamic banks in the GCC could have a long-term impact on their financial performance. Furthermore, despite demonstrating a significant positive relationship between the composite measure of the CSR disclosure index and financial performance, the findings show no statistically significant relationship between the individual dimensions of the CSR disclosure index and the current financial performance measure except for ‘mission and vision’ and ‘products and services’. Similarly, the empirical results detect a positive significant association only between ‘mission and vision’ dimension and future financial performance of the examined banks

    Linking Employee Stakeholders to Environmental Performance: The Role of Proactive Environmental Strategies and Shared Vision

    Get PDF
    Drawing on the natural-resource-based view (NRBV), we propose that employee stakeholder integration is linked to environmental performance through firms’ proactive environmental strategies, and that this link is contingent on shared vision. We tested our model with a cross-country and multi-industry sample. In support of our theory, results revealed that firms’ proactive environmental strategies translated employee stakeholder integration into environmental performance. This relationship was pronounced for high levels of shared vision. Our findings demonstrate that shared vision represents a key condition for advancing the corporate greening agenda through proactive environmental strategies. We discuss implications for the CSR and the environmental management literatures, with a particular focus on the NRBV and stakeholder integration debates

    Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Global transcriptional analysis of loblolly pine (<it>Pinus taeda </it>L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine.</p> <p>Results</p> <p>Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes). Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01). Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs) including those with significant homology (E-values ≤ 2 × 10<sup>-30</sup>) to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function.</p> <p>Conclusion</p> <p>PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in roots. Many of the genes identified are known to be up-regulated in response to osmotic stress in pine and other plant species and encode proteins involved in both signal transduction and stress tolerance. Gene expression levels returned to control values within a 48-hour recovery period in all but 76 transcripts. Correlation network analysis indicates a scale-free network topology for the pine root transcriptome and identifies central nodes that may serve as drivers of drought-responsive transcriptome dynamics in the roots of loblolly pine.</p

    Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility.

    Get PDF
    The Y chromosome is frequently lost in hematopoietic cells, which represents the most common somatic alteration in men. However, the mechanisms that regulate mosaic loss of chromosome Y (mLOY), and its clinical relevance, are unknown. We used genotype-array-intensity data and sequence reads from 85,542 men to identify 19 genomic regions (P < 5 × 10-8) that are associated with mLOY. Cumulatively, these loci also predicted X chromosome loss in women (n = 96,123; P = 4 × 10-6). Additional epigenome-wide methylation analyses using whole blood highlighted 36 differentially methylated sites associated with mLOY. The genes identified converge on aspects of cell proliferation and cell cycle regulation, including DNA synthesis (NPAT), DNA damage response (ATM), mitosis (PMF1, CENPN and MAD1L1) and apoptosis (TP53). We highlight the shared genetic architecture between mLOY and cancer susceptibility, in addition to inferring a causal effect of smoking on mLOY. Collectively, our results demonstrate that genotype-array-intensity data enables a measure of cell cycle efficiency at population scale and identifies genes implicated in aneuploidy, genome instability and cancer susceptibility.This research has been conducted using the UK Biobank Resource under Application Number 9905. This work was supported by the UK Medical Research Council (Unit Programme numbers MC_UU_12015/1 and MC_UU_12015/2). Research in the S. Jackson laboratory is funded by Cancer Research UK (CRUK; programme grant C6/A18796), with Institute core funding provided by CRUK (C6946/A14492) and the Wellcome Trust (WT092096). S. Jackson receives salary from the University of Cambridge, supplemented by CRUK
    corecore