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ABSTRACT 

The Y-chromosome is frequently lost in hematopoietic cells, representing the most common 

somatic mutation in men. However, the mechanisms regulating mosaic loss of chromosome-

Y (mLOY), and its clinical relevance, are unknown. Using genotype array intensity data and 

sequence reads in 85,542 men, we identify 19 genomic regions (P<5x10-8) associated with 

mLOY. Cumulatively, these loci also predicted X-chromosome loss in women (N=96,123, 

P=4x10-6). Additional epigenome-wide methylation analyses in whole blood highlighted 36 

differentially methylated sites associated with mLOY. Identified genes converge on aspects 

of cell proliferation and cell-cycle regulation, including DNA synthesis (NPAT), DNA damage 

response (ATM), mitosis (PMF1-CENPN-MAD1L1) and apoptosis (TP53). We highlight 

shared genetic architecture between mLOY and cancer susceptibility, in addition to inferring 

a causal effect of smoking on mLOY. Collectively, our results demonstrate that genotype 

array intensity data enable a measure of cell-cycle efficiency at population scale, identifying 

genes implicated in aneuploidy, genome instability and cancer susceptibility.  
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INTRODUCTION 

For over a century, errors in cell division have been described which result in too few or too 

many chromosomes in daughter cells, a cytogenetic feature termed aneuploidy. Although a 

well-established feature of human cancer cells, it remains unclear whether acquired 

aneuploidy is a cause or consequence of tumorigenesis. Research into the molecular 

mechanisms of aneuploidy has focussed largely on the role of mitosis and mitotic checkpoint 

signalling, primarily in cellular and animal models1,2. Recent human genomic studies have 

shown that aneuploidy can be estimated using intensity data from standard genotyping 

arrays; an approach validated by DNA sequencing3–5. These population-based studies 

demonstrate that mLOY is more frequent than other mosaic chromosomal and structural 

mutations:  indeed, around 1 in 5 men over 80 years of age has detectable Y mosaicism in 

whole blood-derived DNA4, reflecting the capacity of some cells to survive without this 

chromosome.  

Although a common feature in the general population, it remains unclear whether mLOY is 

relevant to disease susceptibility, or whether cells in tissues other than peripheral blood 

undergo similar rates of chromosomal loss. Population studies have identified correlations 

between mLOY and smoking status, an association which appears transient and reversible 

after smoking cessation6. Such epidemiological studies have also identified associations with 

non-hematological cancers4,5 and Alzheimer’s disease7; however, these observations are 

inconsistent3 and possibly subject to confounding or reverse-causality. 

The ability to assay a common measure of aneuploidy in large array-genotyped populations 

could enable systematic identification of variants/genes involved in cell division errors. This 

would in turn enable a better understanding of the mechanisms involved, and the potential 

causal consequences of aneuploidy on cancer risk, inferred using Mendelian randomisation 

approaches. To date, a single genomic association with mLOY near TCL1A has been 

reported (N=12,369), suggesting that germline variation influencing mosaic chromosome 

loss can be detected3. Here, we use data in up to 85,542 men, highlighting widespread 

genomic, transcriptomic and epigenetic signatures of mosaic Y chromosome loss. We also 

demonstrate that this approach can successfully identify genes implicated in cell cycle 

regulation, genome instability and cancer susceptibility.



RESULTS 

As a proxy for mLOY, we estimated mean intensity log-R ratio of all array-genotyped Y-

chromosome SNPs (mLRR-Y) in a sample of 67,034 male participants from the UK Biobank 

cohort (UKBB)8. A normal distribution centred around zero was observed (standard deviation 

= 0.067), with negative values indicating reduced Y chromosome abundance in the clonal 

blood cell population (Supplementary Figure 1). 

Consistent with previous reports3,6, we observed a strong negative correlation between 

mLRR-Y and age (r=-0.21). A strong association with ‘ever smoking’ status was also 

observed (P=3.05×10-82), which in combination with age explained 4.74% of the trait 

variance (age alone = 4.45%). We sought to demonstrate the causal relationship between 

smoking and mLOY through the principle of Mendelian randomization, using a reported and 

widely used genetic instrument for smoking frequency9. By modelling genetic variants 

robustly associated with cigarettes smoked per day at the CHRNA5-CHRNA3-CHRNB4 

nicotinic receptor locus, we inferred a causal effect of smoking on decreased mLRR-Y 

(increased Y loss) (rs1051730 P=0.03 [Pnever-smokers=0.41, Pever-smokers=0.04]). This genetic 

association was confirmed in independent replication samples (EPIC Norfolk and deCODE 

combined N=18,508, P=0.009, overall combined P=0.004). 

Many autosomal genetic variants are associated with mLOY 

To identify novel genetic variants associated with mLOY, we performed a genome-wide 

association study of mLRR-Y as a quantitative trait in UKB. After stringent quality control 

(see Methods), the most significantly-associated SNPs were located at the previously 

reported3 mLOY locus, TCL1A (P=3.6x10-23). In addition, we identified a further 18 novel 

signals at genome-wide significance (P<5x10-8), with no evidence for significant inflation of 

test statistics genome-wide (lambda=1.05) (Supplementary Figures 2 and 3). Replication 

was subsequently performed in an independent set of 9,793 men with array intensity data, in 

addition to 8,715 men from deCODE with Y loss estimated using sequence reads (see 

Methods). Both replication datasets provided strong statistical support for the identified loci, 

with all 19 loci retaining genome-wide significance in a combined model (Table 1). As 

evaluated in the deCODE data, these loci cumulatively explained 2.7% of the total variance 

in Y chromosome copy number. We estimated an overall heritability of 34% (25.2-42.4%), 

suggesting many additional associated variants remain to be discovered. 

We next used HaploReg10 and sequence data from the deCODE study to functionally 

annotate identified variants and genes. This highlighted four signals containing highly 

correlated missense variants, implicating MAD1L1 (rs1801368, r2>0.98), PMF1 (rs1052053, 

r2=1), NREP (rs11559, r2=0.74) and NPAT (rs2070661, r2=0.97) as potential candidates. 

To ascertain whether the identified signals are more likely to reflect gain or loss of Y 

chromosome material, we performed two analyses comparing the bottom and top 5% of 

mLRR-Y ranked individuals to the median 25%, as a dichotomous indicator of extreme Y-

chromosome loss or gain. All nineteen loci exhibited consistently stronger associations with 

the bottom 5% of mLRR-Y (greatest mLOY) than with the top 5% (Supplementary Table 1), 

suggesting their impact was on mosaic Y chromosome loss rather than gain. Analysis of 

mLRR-Y as a continuous trait across all individuals was, however, the most powerful 



approach for variant discovery, as only two of the signals reached genome-wide significance 

in the stratified analysis. 

Genome-wide pathway analyses conducted on association results for continuous mLRR-Y 

highlighted five pre-defined biological pathways enriched for association (study-wise 

significant FDR<0.05), the most significant of which was ‘Apoptosis’ genes defined per the 

Kyoto Encyclopaedia of Genes and Genomes (KEGG)11 (Supplementary Table 2). Other 

significant pathways included sulphur metabolism, susceptibility to colorectal, prostate and 

thyroid cancers, and progesterone-mediated oocyte maturation. 

The impact of mLOY variants on X-chromosome loss in women 

We next sought to understand whether our identified variants acted only on the Y 

chromosome, or promoted aneuploidy of other chromosomes more generally. Using a 

combined sample of 96,123 women from three studies, we ascertained X chromosome loss 

via both array intensity data (N=86,843) and sequence reads (N=9,280, Figure 1). 

Chromosome X copy number was estimated to have a heritability of 26% (17.4-36.2%) in the 

deCODE data; comparable to that of Y chromosome loss. Cumulatively, the 19 Y loss SNPs 

significantly predicted X loss in women, with the expected direction of effect (Figure 2, 

P=4x10-6). 

Identifying transcriptomic and epigenetic signatures of mLOY 

To identify potential functional transcripts mediating Y chromosome loss, we performed 

summary statistic approaches to infer gene expression associations using three analytical 

imputation approaches12–14 in independent whole-blood expression datasets 

(Supplementary Tables 3-5). Across these datasets, eight genes (HM13, SMPD2, TCL1A, 

SENP7, NPAT, ATM, ACAT1, CENPN) were significantly associated with mLRR-Y, all of 

which mapped near to one of the 19 associated genetic signals from GWAS. 

We additionally identified 36 methylation variable positions (MVPs) correlated with mLRR-Y 

levels in 569 whole-blood samples from the European Prospective Investigation of Cancer 

(EPIC)-Norfolk cohort15 (Supplementary Table 6). All significant MVPs were in genomic 

regions distinct (>500kb) from the 19 mLOY loci, with the exception of four correlated 

methylation probes within the TP53 gene region. To ascertain if any of the methylation 

changes represented causal drivers of mLOY, we next identified cis-methylation quantitative 

trait loci (meQTLs) in publicly available data16 for all associated probes. In total, 20 probes 

had one or more genetic variants in cis which were associated with methylation levels of the 

corresponding site (Supplementary Table 7). None of these genetic variants were 

correlated with the 19 genomic loci; however, one cis-meQTL survived multiple test 

correction for association with mLRR-Y (rs7208523, cg20116579 methylation P=5.6x10-31, 

mLRR-Y P=9x10-4). This suggests that genetic variation at the TNK1 locus, a gene with 

known involvement in tumor growth and survival, may be associated with increased mLOY 

via an epigenetic mechanism17. 

Genetic overlap with cancer susceptibility 

Three mLOY signals are correlated with signals previously reported for basal cell 

carcinoma18, glioma19, neuroblastoma20 (TP53), or testicular cancer21,22 (SEMA4A/PMF1 and 

MAD1L1). In each case, the mLRR-Y decreasing allele (i.e increased mLOY) was 



associated with increased cancer susceptibility. We performed a reciprocal lookup of 90 loci 

previously reported for prostate cancer susceptibility23,24, the most common male non-skin 

cancer in western populations. There was no obvious enrichment of signal across these loci 

and no apparent dose-response relationship between the allelic effects on prostate cancer 

and mLOY (PEGGER-MR = 0.26, Supplementary Table 8, Supplementary Figure 4). Under 

the hypothesis that susceptibility to many types of cancer may have a common basis in 

mitotic error, we performed a GWAS in UKB defining men with any diagnosed cancer as a 

case (N= 7,745 cases, 58,562 controls). This approach was recently used for multiple 

reproductive cancers, yielding several novel loci25. Applying the 19 mLRR-Y signals as an 

additive genetic instrument, there was no evidence of a dose-response relationship between 

genetically-modelled mLOY and cancer risk in men (PEGGER-MR = 0.94, Supplementary Table 

9 and Supplementary Figure 5). To test the relationship between cancer risk and mLOY 

more comprehensively, we estimated the extent of shared genetic architecture across the 

whole genome using LD score regression26. This revealed an overall significant inverse 

relationship between mLRR-Y and cancer risk (rg=-0.42, P=0.02), which was not significant 

when considering only female cancer cases (rg=-0.06, P=0.64). 

 

DISCUSSION 

Our findings, together with previous reports, demonstrate that loss of the Y-chromosome in 

peripheral blood likely represents a proxy trait for the study of aneuploidy in large-scale 

populations, which can be readily estimated from sequencing reads or array-based 

genotyping data. The nature of the genes identified by our analyses suggests that genetic 

determinants of mLOY reflect general mechanisms of aneuploidy, which we speculate most 

frequently manifest in mLOY due to the higher capacity of cells to tolerate Y-chromosome 

loss. This hypothesis is supported by the observation that these same SNPs also predicted 

X chromosome loss in women, the second most frequent large-scale mosaic event27. 

Pathway analyses identified enrichment for cancer and apoptosis pathways associated with 

mLOY. This is further supported by the many well-established cell cycle regulation genes 

which we observed either as the closest gene to the association signal, or which were 

implicated via altered expression or protein coding changes. Major mechanistic aspects of 

the cell cycle, and key regulators of cell-cycle progression were represented by these 

findings (Figure 3), including elements of three cell cycle checkpoints, and several genes 

with complementary functional roles in mitosis. TPX2, CENPN, PMF1 and ATMIN are 

involved in aspects of chromosome alignment during metaphase, spindle assembly, 

orientation and attachment to chromatids ahead of segregation28,29.  In particular, TPX2 

recruits the crucial mitotic enzyme, Aurora Kinase A, to the spindle30, whilst ATMIN regulates 

expression of a dynein motor component (DYNLL1) which critically mediates spindle 

positioning31–33 and also modulates Nek9 kinase signalling required for correct spindle 

formation and function34.  Similarly, Rho-GEF 10 (ARHGEF10, for which we observe a 

nearby methylated signal) regulates centrosome duplication and prevents formation of 

multipolar spindles35.   We identified a missense variant in MAD1L1 (MAD1 mitotic arrest 

deficient like 1), a major component of the spindle assembly checkpoint (SAC). This 

represents a key cellular safeguard against chromosome mis-segregation (and subsequent 

ploidy errors), supressing metaphase-anaphase progression until chromatids are bi-

orientated on a bipolar spindle at the metaphase plate1.  During cytokinesis, SEPT5 (septin 



5, implicated in our methylation analysis) encodes a conserved cell cycle regulator required 

for effective cell division36, while activation of signalling by Rho-GEF 10 (ARHGEF10) 

facilitates contractile ring ingression to separate the two daughter cells37.    

We also implicated a number of genes with established roles in the replication and stability 

of nuclear DNA in interphase:  replication errors are a key cause of genomic instability and 

chromosomal fragility38–40.  G1 to S-phase transition is dependent on NPAT, at least in part 

through it promoting histone gene transcription41, while ATM, at least in part in association 

with ATMIN42, acts as major cell cycle checkpoint kinase dedicated to maintaining genome 

stability throughout interphase, with particular importance at the G1/S and G2/M 

checkpoints40.  In response to double-stranded DNA breaks (DSBs) indicative of genomic 

instability, ATM promotes various responses via p53 and other factors to promote DNA 

repair, arrest cell-cycle progression, or otherwise initiate cell cycle exit strategies including 

apoptosis and senescence38–40,43.  TREX1 encodes 3’ Repair Exonuclease 1, which digests 

aberrant replication intermediates and single stranded DNA from genotoxic stress to prevent 

chronic checkpoint activation44. Predicted deleterious missense variants in this gene were 

recently identified in a mouse GWAS for micronucleus formation, a biomarker of 

chromosomal breaks, whole chromosome loss and extranuclear DNA45. 

At the later stages of the cell lifespan, several genes implicated by our GWAS findings – 

including TP53, TCL1A, SMPD2, BCL2 and BCL2L1 – functionally impact on apoptotic 

events46–50. Apoptosis is a prime mechanism by which cells with detected DNA damage or 

ploidy errors may be eliminated51:  indeed, p53 drives multiple cell-cycle exit responses in 

response to aberrant mitosis, including G1 arrest43,52,53.  The TP53 variant associated with 

mLOY in our analyses is the one previously reported for basal cell carcinoma:  for this trait, 

the risk allele changes the AATAAA polyadenylation signal to AATACA, resulting in impaired 

3′-end processing of TP53 mRNA18. Our findings also implicated genes involved in 

spermatogenesis54,55 (HENMT1 and DAZAP1), and cellular growth and differentiation56 

(DLK1). 

The genes directly involved in mitotic prophase-metaphase and the SAC have clear roles in 

averting chromosomal mis-segregation and preventing these from persisting unchecked, 

however how the broader set of genes we identify here may act to promote mLOY remains 

less clear. We speculate that either many of these genes act in ways that are not currently 

recognised, or alternatively that the other highlighted processes outside of cell cycle control 

and mitosis are important. In particular, as a major mode of cell-cycle exit, our observed 

enrichment of apoptotic regulatory genes and cascades may play a more passive permissive 

role in enabling mis-segregated cells to survive with ploidy errors, rather than being directly 

causative of them. 

Although an initial defect during the cell cycle process is required to generate an aneuploid 

daughter cell, clonal expansion is likely required to drive the lineage to a detectable 

frequency in the circulating white blood cell population. It is possible that mLOY in 

haematopoietic precursors confers a proliferative advantage to such cells, leading to a 

relative enrichment of assayable mLOY progeny. We therefore speculate that some loci may 

operate through this pathway to further facilitate or promote clonal expansion of these cells. 

Additional functional experimentation in cellular and animal systems is ultimately required to 

fully elucidate this issue and the role individual associated genes may play in determining 



mLOY. We also acknowledge that there are likely other, currently unknown, mechanisms by 

which our associated loci exert their effects. 

We observed a substantial shared genetic architecture between mLOY and cancer 

susceptibility, suggesting that bivariate analyses of these two traits may help to prioritise 

novel cancer susceptibility loci and elucidate their functions. We could not, however, find 

evidence of a dose-response relationship between these two traits. This is perhaps not 

surprising given that findings from mouse studies in which mitotic checkpoint components 

are experimentally down-regulated demonstrate an inconsistent relationship between 

aneuploidy and spontaneous tumorigenesis1. It is possible, therefore, that some of our 

identified genes may promote benign aneuploidy, whereas others may play a role more 

generally in genome instability. This makes the use of genetic variants associated with 

mLOY difficult within a Mendelian randomization framework, as genes with general roles in 

instability may have different phenotypic consequences to genes that promote aneuploidy in 

a more stable way. This of course does not preclude identifying causal risk factors for 

mLOY, exemplified by our positive causal inference for smoking on mLOY, using a genetic 

instrument for cigarettes per day. More generally, the association between smoking and 

mLOY suggests that care should be taken to avoid confounding influences such as 

socioeconomic patterning in epidemiological observations between mLOY and disease. In 

addition to fully evaluating the broader disease relevance of mLOY, future epidemiological 

studies should look to assess the differential rates at which mLOY changes in individuals 

over time, its relevance in other tissue types and further non-genetic modifiable factors which 

may influence it. 

In conclusion, our study highlights that estimation of mLOY using genotype array intensity 
data may serve as a useful quantitative measure of cell cycle efficiency and genome 
stability, and may thereby add a new approach to the study of cellular ageing and its 
associations with disease, particularly cancer. 
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Figure Legends 
 
Figure 1 
Estimated X and Y chromosome loss with age in the Icelandic deCODE study.  
(A) Y chromosome copy number estimated in 8703 males from whole genome sequencing. 
(B) X chromosome copy-number for 9280 females.  In each case, the black line indicates the 
line of best fit with age at blood collection as a linear predictor. 
 
Figure 2 
Association of 19 SNP mLOY genetic risk score on X loss in women.  
The genetic risk score is additive, based on mLRR-Y increasing allele dosage. 
 
Figure 3 
Overview of identified genes implicated in Y chromosome loss.   
Genes falling within GWAS loci are shown in blue, those implicated by methylation analyses 
in green.  Grey boxes highlight specific checkpoints, signalling cascades, or enzymes of 
note.  Green arrows denote activation of a target by phosphorylation, blue arrows a 
signalling cascade and its ultimate effect. 



Table 1 | Genome-wide significant associations with Y chromosome loss. 

SNP Location Alleles1 

UK Biobank  
(N=67,034) 

EPIC Norfolk  
(N=9,793) 

deCODE  
(N=8,715) Replication P 

 
Overall P 

 
Gene4 

Effect2 P Effect2 P Effect3 P 

rs17758695 18q21.33 C/T/0.97 -0.01 6.4x10-21 -0.014 3.7x10-04 -0.020 9.1x10-13 2.7x10-17 1.3x10-33 BCL2 [NC] 

rs1122138 14q32.13 C/A/0.84 -0.005 3.6x10-23 -0.006 4.3x10-04 -0.007 1.5x10-04 8.0x10-10 6.3x10-31 TCL1A [NEC] 

rs78378222 17p13.1 G/T/0.01 -0.013 1.3x10-15 -0.032 1.8x10-06 -0.026 3.8x10-10 7.3x10-18  3.4x10-28 TP53 [CN] 

rs59633341 3q25.1 A/AT/0.16 -0.004 2.6x10-18 -0.009 7.5x10-07 -0.007 1.1x10-05 8.5x10-14 4.1x10-28 TSC22D2 [N] 

rs2736609 1q22 T/C/0.36 -0.003 1.9x10-12 -0.003 4.9x10-02 -0.006 2.5x10-07 2.4x10-10 2.0x10-19 PMF1 [CFN], SEMA4A [CE] 

rs13191948 6q21 C/T/0.54 -0.002 1.2x10-11 -0.006 5.4x10-06 -0.005 3.8x10-05 4.5x10-12 2.2x10-19 SMPD2 [E], CCDC162P [NE] 

rs60084722 20q11.21 CT/C/0.79 -0.003 6.6x10-13 -0.002 2.5x10-01 -0.006 9.4x10-05 1.5x10-6 1.6x10-17 TPX2 [NEC], BCL2L1 [C], HM13 [E] 

rs381500 6q26 C/A/0.55 -0.002 5.7x10-11 -0.002 1.9x10-01 -0.005 1.1x10-07 1.8x10-7 5.0x10-16 QKI [N] 

rs56084922 5q22.1 G/A/0.08 -0.005 2.9x10-13 -0.004 1.2x10-01 -0.005 1.6x10-03 2.8x10-3 3.0x10-15 NREP [N] 

rs137952017 14q32.2 C/CT/0.85 -0.003 1.2x10-09 -0.01 1.3x10-07 -0.004 4.0x10-04 2.4x10-8 4.0x10-15 DLK1 [N] 

rs4721217 7p22.3 T/C/0.4 -0.002 6.5x10-10 -0.005 2.8x10-04 -0.003 1.1x10-05 1.7x10-6 3.5x10-14 MAD1L1 [NFC] 

rs35091702 8p12 C/CAAAAAAG/0.74 -0.002 4.2x10-10 -0.004 6.0x10-03 -0.002 3.9x10-02 6.5x10-3 9.5x10-12 RBPMS [N] 

rs4754301 11q22.3 A/G/0.55 -0.002 1.3x10-09 -0.001 5.4x10-01 -0.002 2.8x10-02 1.5x10-2 6.5x10-11 NPAT [NF], ATM  [C], ACAT1 [E] 

rs12448368 16q23.2 C/T/0.13 -0.003 9.8x10-10 -0.002 2.5x10-01 -0.003 2.4x10-02 2.2x10-2 7.1x10-11 CENPN [NEC], ATMIN  [CE] 

rs11082396 18q12.3 C/T/0.13 -0.003 3.3x10-09 -0.004 6.7x10-02 -0.003 1.2x10-01 1.1x10-2 1.2x10-10 SETBP1 [N] 

rs13088318 3q12.3 G/A/0.34 -0.002 4.1x10-09 -0.0004 7.7x10-01 -0.003 1.7x10-02 2.1x10-2 2.7x10-10 SENP7 [E] 

rs77522818 17q21.33 A/T/0.96 -0.005 1.3x10-09 -0.004 3.0x10-01 -0.002 2.4x10-01 1.6x10-1 8.8x10-10 FAM117A (N) 

rs10687116 13q14.11 AGATG/A/0.8 -0.002 2.6x10-08 -0.001 5.8x10-01 -0.003 5.8x10-02 1.0x10-2 8.8x10-10 WBP4 [N] 

rs115854006 3p21.31 C/T/0.96 -0.006 3.7x10-08 -0.007 5.4x10-02 0.002 9.3x10-01 3.4x10-1 4.5x10-08 TREX1 [C], PLXNB1 [C] 
 
1. mLRR-Y lowering allele / increasing allele / lowering allele frequency 
2. Effect estimates in per-allele decreases in raw mean intensity log-R ratio units 
3. Effect estimate per allele for copy number transformed log2(chrY copy-number) 
4. Labelled gene where preceding nomenclature refers to [N] nearest (default), [C] biological candidate, [E] expression mediated by mLRR-Y associated SNPs, [F] non-synonymous 
variant in gene.



ONLINE METHODS 
 
Estimating Y chromosome mosaicism in UK Biobank 
 
We analysed data from the May 2015 release of imputed genetic data from UK Biobank8, 
containing ~73M SNPs, short indels and large structural variants in 152,249 individuals. Full 
details have been published elsewhere57. Briefly, the samples were genotyped on two 
slightly different arrays - approximately 50,000 on the custom UK BiLEVE study array, and 
the remainder (~100,000) on the UK Biobank Axiom array (Affymetrix), which was 
specifically designed to optimize imputation performance in GWAS studies. Removal of 
SNPs with missing data, multi-allelic SNPs, SNPs with a minor allele frequency (MAF) <1%, 
and 1,037 sample outliers, resulted in a dataset with 641,018 autosomal SNPs in 152,256 
samples for phasing and imputation. Imputation was performed using a reference panel 
created by merging the UK10K haplotype panel with the 1000 Genomes Phase 3 reference 
panel.  
 
In addition to the quality control metrics performed centrally by UK Biobank, we defined a 
subset of “white European” ancestry samples using a K-means clustering approach applied 
to the first four principle components calculated from genome-wide SNP genotypes. All 
individuals defined in this group also self-identified by questionnaire as being of white 
ancestry.  
 
mLOY was estimated by calculating the mean log-R ratio (normalised signal intensity) of 
SNPs on the male-specific region of the Y chromosome.  Signal intensity, genotype call and 
confidence files from Affymetrix Power Tools software were analysed using the PennCNV-
Affy pipeline58 to produce a log-R ratio (LRR) for each SNP.  SNPs without LRR calculable 
on both arrays, or those flagged by UKB as failing QC, were excluded. Whole Y 
chromosome fluorescence signal intensity was summarised by calculation of mean LRR 
across all Y chromosome SNPs (mLRR-Y).  After omission of monomorphic SNPs, 
genotyping and QC failures, 253 SNPs were available across all participants for derivation of 
mLRR-Y.  
 
Association testing and signal selection 
 
Autosomal SNPs were analysed by linear mixed models implemented in BOLT-LMM59 to 
account for cryptic population structure and relatedness within this group in our genetic 
association tests. The regression model included age and genotyping array as covariates. 
SNPs with an imputation quality < 0.4 or MAF < 0.1% were excluded post-analysis. After 
application of QC criteria, a maximum of 67,034 men were available for analysis with 
genotype and phenotype data. Samples were subdivided by never (N=32,539] vs ever 
N=34,329] smoking for the Mendelian Randomization analysis using the CHRNA5-CHRNA3-
CHRNB4 rs1051730 locus. Genomic loci were defined on the basis of physical proximity 
using a 1 Mb window. The following genome-wide significant signals were excluded from 
further consideration due to concerns of technical artefacts: rs61737590  (Chr1-27Mb), 
rs115979215 (Chr2-54Mb), rs1857807 (Chr2-115Mb), rs115722056 (Chr2-171Mb), 
rs73191481 (Chr3-105Mb), rs9289877 (Chr3-152Mb), rs77306208 (Chr3-194Mb), 
rs9269173 (Chr6-32Mb), rs117810108 (Chr7-130Mb), rs117941885 (Chr12-90Mb), 
rs118031436 (Chr15-57Mb),  rs16961626 (Chr16-84Mb),   rs58108384 (Chr20-7Mb), 
rs73892829 (Chr21-19Mb),  rs116446488 (Chr22-24Mb). All were excluded due to fulfilment 
of 2 or more of the following criteria: a) singletons in regional association plots, b) 
significantly associated with genotype array status, c) associated with mLRR-Y in women 
(reflecting technical background intensity). 
 
 
 



Replication 
 
Replication was performed in two independent studies using two separate techniques. 
 
The first comprised 9,793 men from the EPIC-Norfolk study15, following the same protocol 
using GWAS array intensity data as described above. 
 
Secondly, we analyzed whole-blood genome sequences of 8,715 Icelandic males60 (age 
range 41-105 years, mean 63 years), that had been whole-genome sequenced by Illumina 
method to a mean depth of 37x. 
 
As an estimate of chromosome Y copy-number we used the average read depth over 
chromosome Y, using exclusively X-degenerate regions. This was computed by samtools 
from bam files aligned to hg38 and normalized by genome-wide sequencing coverage for the 
subject. A total of 12 outlier individuals (copy-number greater than 1.25) were excluded. 
 
Chromosome Y copy-number had a strong negative correlation with age at bleeding 
(Spearman correlation r=-0.50).  For individuals older than 60 years at the time of sample 
collection, the distribution of chromosome Y copy-number has a heavy left tail with copy-
numbers as low as 0.08. 
 
Association analysis was performed using BOLT-LMM59 after inverse normal transformation 
and adjustment for age at bleeding. To enable comparison with the estimates obtained from 
GWAS array intensity data, effect sizes for log2(chrY copy-number) were estimated using 
robust linear regression (rlm from R package MASS). 
 
The fraction of variance explained by a given variant was calculated using the formula 2f(1-
f)a^2, in which f denotes the minor allele frequency of the variant and a is the additive effect 
in standard deviations. Heritability estimates were calculated using the spearman rank 
correlation of the traits between sibling pairs (max N=1488). 
 
X chromosome loss 
 
Similarly to mLOY, X chromosome loss was estimated using two complementary methods. 
Firstly, mLRR-X was calculated in UK Biobank (N=75,595) and EPIC Norfolk (N=11,248), 
using the same methodology described for X loss. Secondly, a similar analysis was 
performed using whole blood genome sequences of 9,302 Icelandic females (age range 41-
106 years, mean 63 years) whole-genome sequenced to a mean depth of 36x. The 
chromosome X copy-number was estimated from the average read depth over chromosome 
X, excluding paralogous regions PAR1 and PAR2, the X-transposed region, and the 
centromere. This estimate was normalized by genome-wide sequencing coverage for the 
subject and adjusted for the sequencing protocol. A total of 22 outlier individuals (copy-
number greater than 2.5 or less than 1.5) were excluded. We observed a Spearman 
correlation of -0.28 between the chromosome X copy-number and age at bleeding. 
 
Cancer GWAS 
 
To understand the genomic relationship between cancer and mLOY, we defined an ‘any 
prevalent cancer’ variable in UKB using linked UK cancer registrations. Individuals with a 
reported age of diagnosis in the cancer registry were coded as a case. Individuals with 
inconsistent cancer diagnosis (i.e a reported cancer but not age at diagnosis) were set to 
missing, and controls were defined as any individual with no self-reported or registry-defined 
cancer. GWAS analysis was performed as described above, including age, sex and 
genotyping array as covariates. 
 



Genetic correlations (rg) were calculated between mLRR-Y and cancer using LD Score 
Regression26. 
 
In order to assess the possible causal links between cancer and mLOY we applied 
Mendelian Randomization methods, which have been described extensively elsewhere61. In 
order to be as conservative as possible we preferentially report results from the Egger 
regression method, though inverse weighted, median weighted and penalised median 
weighted analyses were also calculated.   
 
Gene expression 
 
To identify specific eQTL linked genes, we utilised three complementary approaches – SMR, 
TWAS and MetaXcan – enabling systematic integration of publicly available gene expression 
data with our genome-wide dataset. 
 
Summary Mendelian Randomization (SMR) uses summary-level gene expression data to 
map potentially functional genes to trait-associated SNPs14. We ran this approach against 
the publicly available whole-blood eQTL dataset published by Westra et al62, providing 
association statistics for 5,952 transcripts. A conservative significance threshold was set at 
P<4.9x10-6 reflecting the number of genes tested genome-wide. 
 
MetaXcan, a meta-analysis extension of the PrediXcan method13, was used to infer the 
association between genetically predicted gene expression (GPGE) and mLRR-Y. 
PrediXcan is a gene-based data aggregation and integration method which incorporates 
information from gene-expression data and GWAS data to translate evidence of association 
with a phenotype from the SNP-level to the gene. Briefly, PrediXcan first imputes gene-
expression at an individual level using prediction models trained on measured transcriptome 
datasets with genome-wide SNP data and then regresses the imputed transcriptome levels 
with phenotype of interest. MetaXcan extends its application to allow inference of the 
direction and magnitude of GPGE-phenotype associations with only summary GWAS 
statistics, which is advantageous when SNP-phenotype associations result from a meta-
analysis setting and also when individual level data are not available. As input we utilized 
GWAS meta-analysis summary statistics for mLRR-Y, LD matrix from the 1000 Genomes 
project, and as weights, gene-expression regression coefficients for SNPs from models 
trained with whole-blood transcriptome data from the GTEx Project63. Threshold for 
statistical significance was estimated using the Bonferroni correction for number of tested 
genes. 
 
Finally, we used the recently described Transcriptome-wide Association Study (TWAS) 
approach12 to infer gene expression association using two whole blood datasets (Young 
Finns Study and Netherlands Twin Registry cohorts). The threshold for significance was set 
to correct for the number of studies and genes (P<1x10-5). Each of the three approaches 
described in this section were compared by estimating the correlation (r) of association Z 
scores across genes present in all three datasets. There was strong concordance between 
the 2,326 transcripts analysed across the three approaches/datasets; SMR vs. TWAS 
r=0.72, SMR vs. MetaXcan r=0.54, TWAS vs. MetaXcan r=0.55. 
 
Methylation 
 
DNA methylation in whole blood was measured for 1,378 individuals in the EPIC-Norfolk 
cohort using the Illumina Human Methylation 450k BeadChip platform.  After setting 
methylation markers with detection p-value ≥ 0.01 to missing, methylation beta values were 
calculated for each marker. Quantile normalisation of methylation betas was applied 
separately to different marker groups based on colour channel, probe type and M/U 
subtypes64. Samples with a sample call rate ≤0.99 were removed (n=77).  Methylation beta 



value distributions of the X, Y and autosomal chromosome markers were analysed 
separately and a further 11 sample outliers were excluded.  Within each sample, markers 
with a marker call rate ≤ 0.95 were excluded (n=4,423).  
   
All further downstream analyses were restricted to autosomal methylation markers. Signal 
detection of methylation intensities can be affected by several factors, including SNPs on the 
probe, repetitive DNA, and cross-reactive probes. We thus calculated the proportion of 
missing data at each CpG site (marker call rate) and 8,775 CpGs with a call rate ≤ 0.95 were 
excluded.  3,295 CpGs with multimodal distributions of methylation intensities, identified by 
the R package ENmix65, which typically arise from technical artefacts were also excluded.  A 
further 18,874 CpG sites which were previously identified as mapping to more than 1 
genomic location66 were also excluded.   The final cleaned dataset comprised 442,920 
autosomal CpG sites.  To account for cell composition variability, we estimated counts of T 
lymphocyte subtypes, natural killer cells, monocytes, granulocytes and B lymphocytes using 
the minfi R package67,68. These were included as covariates in subsequent epigenome-wide 
regression models. 
 
To examine the association between methylation markers and mLOY, we performed an 
epigenome-wide association analysis in all male EPIC-Norfolk methylation samples (n=569).  
mLRR-Y was regressed separately on each methylation marker, adjusted for type 2 diabetes 
status, age, current smoking status, estimated cell counts, and sample plate.  Bonferroni 
correction was applied, accounting for the number of markers tested (p=1×10-7).  
Furthermore, we checked that no significant CpG sites had sequences which also mapped 
to the Y chromosome. 
 
Association statistics for genetic variants within the probe vicinity and corresponding 
methylation levels (i.e cis-meQTLs) were available from the BIOS QTL browser 
(http://www.genenetwork.nl/biosqtlbrowser/) 
 
Pathway analyses 
 
Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) was used to 
explore pathway-based associations in the full GWAS dataset. MAGENTA implements a 
gene set enrichment analysis (GSEA) based approach, as previously described69.  Briefly, 
each gene in the genome is mapped to a single index SNP with the lowest P-value within a 
110 kb upstream, 40 kb downstream window. This P-value, representing a gene score, is 
then corrected for confounding factors such as gene size, SNP density and LD-related 
properties in a regression model. Genes within the HLA-region were excluded from analysis 
due to difficulties in accounting for gene density and LD patterns. Each mapped gene in the 
genome is then ranked by its adjusted gene score. At a given significance threshold (95th 
and 75th percentiles of all gene scores), the observed number of gene scores in a given 
pathway, with a ranked score above the specified threshold percentile, is calculated. This 
observed statistic is then compared to 1,000,000 randomly permuted pathways of identical 
size. This generates an empirical GSEA P-value for each pathway. Study-wise significance 
was determined when an individual pathway reached a false discovery rate (FDR) <0.05 in 
either analysis. In total, 3216 pathways from Gene Ontology, PANTHER, KEGG and 
Ingenuity were tested for enrichment of multiple modest associations with mLRR-Y. 
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