25 research outputs found

    Trait anxiety and the neural efficiency of manipulation in working memory

    Get PDF
    The present study investigates the effects of trait anxiety on the neural efficiency of working memory component functions (manipulation vs. maintenance) in the absence of threat-related stimuli. For the manipulation of affectively neutral verbal information held in working memory, high- and low-anxious individuals (N = 46) did not differ in their behavioral performance, yet trait anxiety was positively related to the neural effort expended on task processing, as measured by BOLD signal changes in fMRI. Higher levels of anxiety were associated with stronger activation in two regions implicated in the goal-directed control of attention--that is, right dorsolateral prefrontal cortex (DLPFC) and left inferior frontal sulcus--and with stronger deactivation in a region assigned to the brain's default-mode network--that is, rostral-ventral anterior cingulate cortex. Furthermore, anxiety was associated with a stronger functional coupling of right DLPFC with ventrolateral prefrontal cortex. We interpret our findings as reflecting reduced processing efficiency in high-anxious individuals and point out the need to consider measures of functional integration in addition to measures of regional activation strength when investigating individual differences in neural efficiency. With respect to the functions of working memory, we conclude that anxiety specifically impairs the processing efficiency of (control-demanding) manipulation processes (as opposed to mere maintenance). Notably, this study contributes to an accumulating body of evidence showing that anxiety also affects cognitive processing in the absence of threat-related stimuli

    Transfer Effects to a Multimodal Dual-Task after Working Memory Training and Associated Neural Correlates in Older Adults

    Get PDF
    Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60–72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality (p < 0.05) and the auditory modality (p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination.Peer Reviewe

    Age-Related Interference between the Selection of Input-Output Modality Mappings and Postural Control—a Pilot Study

    Get PDF
    Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19–30 and 66–84 years while they performed different versions of a spatial one-back working memory task during semi- tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory- manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working- memory load, processes related to simultaneously overcoming special linkages between input- and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks

    Effects of Physical and Mental Fatigue on Postural Sway and Cortical Activity in Healthy Young Adults

    Get PDF
    Physical fatigue (PF) negatively affects postural control, resulting in impaired balance performance in young and older adults. Similar effects on postural control can be observed for mental fatigue (MF) mainly in older adults. Controversial results exist for young adults. There is a void in the literature on the effects of fatigue on balance and cortical activity. Therefore, this study aimed to examine the acute effects of PF and MF on postural sway and cortical activity. Fifteen healthy young adults aged 28 ± 3 years participated in this study. MF and PF protocols comprising of an all-out repeated sit-to-stand task and a computer-based attention network test, respectively, were applied in random order. Pre and post fatigue, cortical activity and postural sway (i.e., center of pressure displacements [CoPd], velocity [CoPv], and CoP variability [CV CoPd, CV CoPv]) were tested during a challenging bipedal balance board task. Absolute spectral power was calculated for theta (4–7.5 Hz), alpha-2 (10.5–12.5 Hz), beta-1 (13–18 Hz), and beta-2 (18.5–25 Hz) in frontal, central, and parietal regions of interest (ROI) and baseline-normalized. Inference statistics revealed a significant time-by-fatigue interaction for CoPd (p = 0.009, d = 0.39, Δ 9.2%) and CoPv (p = 0.009, d = 0.36, Δ 9.2%), and a significant main effect of time for CoP variability (CV CoPd: p = 0.001, d = 0.84; CV CoPv: p = 0.05, d = 0.62). Post hoc analyses showed a significant increase in CoPd (p = 0.002, d = 1.03) and CoPv (p = 0.003, d = 1.03) following PF but not MF. For cortical activity, a significant time-by-fatigue interaction was found for relative alpha-2 power in parietal (p < 0.001, d = 0.06) areas. Post hoc tests indicated larger alpha-2 power increases after PF (p < 0.001, d = 1.69, Δ 3.9%) compared to MF (p = 0.001, d = 1.03, Δ 2.5%). In addition, changes in parietal alpha-2 power and measures of postural sway did not correlate significantly, irrespective of the applied fatigue protocol. No significant changes were found for the other frequency bands, irrespective of the fatigue protocol and ROI under investigation. Thus, the applied PF protocol resulted in increased postural sway (CoPd and CoPv) and CoP variability accompanied by enhanced alpha-2 power in the parietal ROI while MF led to increased CoP variability and alpha-2 power in our sample of young adults. Potential underlying cortical mechanisms responsible for the greater increase in parietal alpha-2 power after PF were discussed but could not be clearly identified as cause. Therefore, further future research is needed to decipher alternative interpretations

    Modality-specific effects of mental fatigue in multitasking

    Get PDF
    The mechanisms underlying increased dual-task costs in the comparison of modality compatible stimulus-response mappings (e.g., visual-manual, auditory-vocal) and modality incompatible mappings (e.g., visual-vocal, auditory-manual) remain elusive. To investigate whether additional control mechanisms are at work in simultaneously processing two modality incompatible mappings, we applied a transfer logic between both types of dual-task mappings in the context of a mental fatigue induction. We expected an increase in dual-task costs for both modality mappings after a fatigue induction with modality compatible tasks. In contrast, we expected an additional, selective increase in modality incompatible dual-task costs after a fatigue induction with modality incompatible tasks. We tested a group of 45young individuals (19–30 years) in an online pre-post design, in which participants were assigned to one of three groups. The two fatigue groups completed a 90-min time-on-task intervention with a dual task comprising either compatible or incompatible modality mappings. The third group paused for 90 min as a passive control group. Pre and post-session contained single and dual tasks in both modality mappings for all participants. In addition to behavioral performance measurements, seven subjective items (effort, focus, subjective fatigue, motivation, frustration, mental and physical capacity) were analyzed. Mean dual-task performance during and after the intervention indicated a practice effect instead of the presumed fatigue effect for all three groups. The modality incompatible intervention group showed a selective performance improvement for the modality incompatible mapping but no transfer to the modality compatible dual task. In contrast, the compatible intervention group showed moderately improved performance in both modality mappings. Still, participants reported increased subjective fatigue and reduced motivation after the fatigue intervention. This dynamic interplay of training and fatigue effects suggests that high control demands were involved in the prolonged performance of a modality incompatible dual task, which are separable from modality compatible dual-task demands

    The acute effects of mental fatigue on balance performance in healthy young and older adults:A systematic review and meta-analysis

    Get PDF
    Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = −0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive

    Individual Differences in Goal Pursuit Despite Interfering Aversion, Temptation, and Distraction

    Get PDF
    Self-control can be defined as the ability to exert control over ones impulses. Currently, most research in the area relies on self-report. Focusing on attentional control processes involved in self-control, we modified a spatial selective attentional cueing task to test three domains of self- control experimentally in one task using aversive, tempting, and neutral picture-distractors. The aims of the study were (1) to investigate individual differences in the susceptibility to aversive, tempting, and neutral distraction within one paradigm and (2) to test the association of these three self-control domains to conventional measures of self-control including self- report. The final sample consisted of 116 participants. The task required participants to identify target letters “E” or “F” presented at a cued target location while the distractors were presented. Behavioral and eyetracking data were obtained during the performance of the task. High task performance was encouraged via monetary incentives. In addition to the attentional self- control task, self-reported self-control was assessed and participants performed a color Stroop task, an unsolvable anagram task and a delay of gratification task using chocolate sweets. We found that aversion, temptation, and neutral distraction were associated with significantly increased error rates, reaction times and gaze pattern deviations. Overall task performance on our task correlated with self-reported self-control ability. Measures of aversion, temptation, and distraction showed moderate split-half reliability, but did not correlate with each other across participants. Additionally, participants who made a self-controlled decision in the delay of gratification task were less distracted by temptations in our task than participants who made an impulsive choice. Our individual differences analyses suggest that (1) the ability to endure aversion, resist temptations and ignore neutral distractions are independent of each other and (2) these three domains are related to other measures of self-control

    Interference processing in dual tasks

    Get PDF
    Zahlreiche Untersuchungen belegen fundamentale Grenzen in der menschlichen Fähigkeit, mehrere Dinge gleichzeitig zu tun. Aktuelle Theorien zur Verarbeitung von Doppelaufgaben gehen davon aus, dass kognitive Kontrollprozesse den Verarbeitungsstrom mehrerer Aufgaben koordinieren. Funktionell-neuroanatomisch wird insbesondere der laterale Präfrontalcortex (lPFC) mit der Kontrolle zielgerichteten Verhaltens in Verbindung gebracht. Mittels funktioneller Magnetresonanztomographie (fMRT) wurde bereits eine Beteiligung des lPFC an der Verarbeitung von Doppelaufgaben nachgewiesen. Die neuronalen Mechanismen der Doppelaufgabenkoordination sind jedoch weitgehend ungeklärt. Die drei fMRT Studien der vorliegenden Dissertation spezifizieren die funktionelle Rolle des lPFC bei der Interferenzverarbeitung in Doppelaufgaben. Die Ergebnisse zeigen (1) die Allgemeinheit der lPFC-Beteiligung über verschiedenen Doppelaufgabensituationen hinweg, (2) die funktionell-neuroanatomische Dissoziierbarkeit verschiedener doppelaufgabenrelevanter Kontrollfunktionen im lPFC , (3) die Bedeutung der Interaktion des lPFC mit posterioren aufgabenrelevanten Regionen für die Kontrolle von Doppelaufgabenverarbeitung.Numerous studies indicate fundamental limitations in the human ability to do multiple things at the same time. Recent theories on dual-task processing postulate the involvement of cognitive control processes in the coordination of the processing stream of multiple tasks. The most prominent neuroanatomical structure associated with the control of goal-directed human behavior is the lateral prefrontal cortex (lPFC). It has been show with functional Magnetic Resonance Imaging (fMRI) that the lPFC is also involved in the processing of dual tasks. However, the precise role of the lPFC for the control of dual-task processing and the neural mechanisms of dual-task coordination are still widely unknown. The three fMRI studies presented in this dissertation specify the functional role of the lPFC in interference processing in dual tasks.The results show (1) the generality of lPFC involvement across different types of dual-task situations, (2) the functional neuroanatomical dissociability of different dual-task relevant control process in the lPFC, (3) the role of the interaction of the lPFC with posterior task-relevant brain regions for the control of dual-task processin

    Age-Related Interference between the Selection of Input-Output Modality Mappings and Postural Control—a Pilot Study

    No full text
    Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19–30 and 66–84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input- and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks

    Functional connectivity separates switching operations in the posterior lateral frontal cortex

    Get PDF
    Contains fulltext : 99355-OA.pdf (publisher's version ) (Open Access)Task representations consist of different aspects such as the representations of the relevant stimuli, the abstract rules to be applied, and the actions to be performed. To be flexible in our daily lives, we frequently need to switch between some or all aspects of a task. In the present study, we examined whether switching between abstract task rules and switching between response hands is associated with overlapping regions in the posterior lateral frontal cortex and whether switching between these two aspects of a task representation is neurally implemented by distinct functional brain networks. Subjects performed a cue-based task-switching paradigm where the location of the task cue additionally specified the response hand to be used. Overlapping activity for switching between abstract rules versus response hands was present in the inferior frontal junction area of the posterolateral frontal cortex. This region, however, showed very distinct patterns of functional connectivity depending on the content of the switch: Increased functional connectivity with anterior prefrontal, superior frontal, and hippocampal regions was present for abstract rule switching, whereas response hand switching led to increased coupling with motor regions surrounding the central sulcus. These results reveal that a rather general involvement of the posterior lateral frontal cortex in different switching contexts can be further characterized by highly specific functional interactions with other task-relevant regions, depending on the content of the switch
    corecore