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Abstract 

 

Numerous studies indicate fundamental limitations in the human ability to do multiple things 

at the same time. Recent theories on dual-task processing postulate the involvement of 

cognitive control processes in the coordination of the processing stream of multiple tasks. The 

most prominent neuroanatomical structure associated with the control of goal-directed human 

behavior is the lateral prefrontal cortex (lPFC). It has been show with functional Magnetic 

Resonance Imaging (fMRI) that the lPFC is also involved in the processing of dual tasks. 

However, the precise role of the lPFC for the control of dual-task processing and the neural 

mechanisms of dual-task coordination are still widely unknown. The three fMRI studies 

presented in this dissertation specify the functional role of the lPFC in interference processing 

in dual tasks.The results show (1) the generality of lPFC involvement across different types of 

dual-task situations, (2) the functional neuroanatomical dissociability of different dual-task 

relevant control process in the lPFC, (3) the role of the interaction of the lPFC with posterior 

task-relevant brain regions for the control of dual-task processing 
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Zusammenfassung 

 

Zahlreiche Untersuchungen belegen fundamentale Grenzen in der menschlichen Fähigkeit, 

mehrere Dinge gleichzeitig zu tun. Aktuelle Theorien zur Verarbeitung von Doppelaufgaben 

gehen davon aus, dass kognitive Kontrollprozesse den Verarbeitungsstrom mehrerer 

Aufgaben koordinieren. Funktionell-neuroanatomisch wird insbesondere der laterale 

Präfrontalcortex (lPFC) mit der Kontrolle zielgerichteten Verhaltens in Verbindung gebracht. 

Mittels funktioneller Magnetresonanztomographie (fMRT) wurde bereits eine Beteiligung des 

lPFC an der Verarbeitung von Doppelaufgaben nachgewiesen. Die neuronalen Mechanismen 

der Doppelaufgabenkoordination sind jedoch weitgehend ungeklärt. Die drei fMRT Studien 

der vorliegenden Dissertation spezifizieren die funktionelle Rolle des lPFC bei der 

Interferenzverarbeitung in Doppelaufgaben. Die Ergebnisse zeigen (1) die Allgemeinheit der 

lPFC-Beteiligung über verschiedenen Doppelaufgabensituationen hinweg, (2) die funktionell-

neuroanatomische Dissoziierbarkeit verschiedener doppelaufgabenrelevanter 

Kontrollfunktionen im lPFC , (3) die Bedeutung der Interaktion des lPFC mit posterioren 

aufgabenrelevanten Regionen für die Kontrolle von Doppelaufgabenverarbeitung. 
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1  Introduction 
 

Whether people talk to their co-driver while driving a car, browse the web while using other 

computer programs or cook a meal while monitoring their children’s activities – humans are 

permanently confronted with a multitude of information streams and options to behave. 

Multi-tasking seems to be part of the everyday life in most of us. 

However, there exist fundamental limitations in our ability to do multiple things at the 

same time. In fact, there is strong evidence from experimental psychology that humans are 

generally not even able to do two simple things at the same time (Pashler, 1994; Welford, 

1952). Even when trying to make two easy decisions simultaneously, severe performance 

costs emerge – that is, people are slower and make more errors as compared to a situation 

where both decisions are made sequentially. While this may be acceptable in some situations 

(e.g. being slower in browsing the web) it can have disastrous consequences in other 

situations (e.g. not braking in time for a child running on the street).   

In any case, we need to control the temporal order of our actions in order to perform 

optimally and in accordance with our internal goals. Recent theories on dual-task processing 

assume that there exist control processes in the human cognitive system which coordinate the 

processing stream of multiple tasks and thus deal with the seemingly inherent multi-tasking 

deficit expressed in dual-task performance costs (Meyer & Kieras, 1997; Logan & Gordon, 

2001; Sigman & Dehaene, 2006).  

The most prominent neuroanatomical structure associated with the control of human 

behavior is the lateral prefrontal cortex (lPFC) (Duncan, 2001; Fuster, 2000; Miller & Cohen, 

2001).  The lPFC is known to be involved in the maintenance of information and the 

attentional selection and coordination of relevant and irrelevant information enabling goal-

directed behavior. 
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It has been shown with functional Magnetic Resonance Imaging (fMRI) that the lPFC 

is also involved in the processing of dual tasks (D’Esposito et al., 1995; Erickson et al., 

2005a; Schubert & Szameitat, 2003). These studies identified dual-task-related regions by 

comparing the processing of dual tasks with the processing of single tasks. Such a 

comparison, however, might reflect any difference between the two types of tasks. Only a few 

recent studies attempted to specify the type of interference and the control processes related to 

the dual-task-related activity in the lPFC (Dux, Ivanoff, & Marois, 2006; Herath, Klingberg, 

Young, Amunts, & Roland, 2001; Jiang, 2004; Szameitat, Schubert, Mueller, & von Cramon., 

2002; Szameitat, Lepsien, von Cramon, Sterr, & Schubert, 2006). However, the precise 

functional role of the lPFC for the control of dual-task processing and the neural mechanism 

of dual-task coordination are still widely unknown. In particular, three important questions 

concerning the functional role of the lPFC in dual-task processing remain open. These 

questions concern: 

I. the generality of the lPFC involvement in dual-task processing across different tasks and 

different types of dual-task coordination 

II. the functional neuroanatomical dissociability of different control processes involved in 

dual-task processing in the lPFC 

III. the interaction of the lPFC with posterior task-relevant brain regions serving the control 

of the dual-task processing stream. 

The three fMRI studies presented in this dissertation aim at specifying the functional 

role of the lPFC in interference processing in dual tasks with respect to these three issues. All 

three issues are of relevance not only for the understanding of  the neural implementation of 

dual-task processing in the lPFC but also for the understanding of the functionality of the 

lPFC in general. 

 In the following section, first, a short background on cognitive theories on dual-task 

processing will be provided. Then, the functionality of the lPFC for cognitive control in 

general will be described in order to derive hypotheses about the functionality of the lPFC in 
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dual-task processing. After describing the methodological approaches used in the three studies 

of this dissertation, an overview of the research questions and the obtained results of these 

studies will be given. The obtained findings will then be summarised and some future 

directions will be outlined. Each study is presented in detail as original article.  

 

2 Theoretical and empirical background 

2.1 Interference processing in dual tasks 

2.1.1 The dual-task paradigm 

The limited ability to perform two tasks simultaneously has been extensively studied in 

cognitive psychology. The common principle of these studies is to present two tasks more or 

less simultaneously and to measure behavioral performance costs associated with dual-task 

processing. However, the applied paradigms also vary depending on the theoretical 

backgrounds and research questions of the respective authors. Baddeley (1998), for example, 

frequently used continuous secondary tasks like visual tracking to investigate the properties of 

assumed sub-systems in human working memory. Other authors like Kahnemann (1973) also 

mostly applied rather complex component tasks and investigated the resource allocation of 

their participants to these tasks in order to understand the dynamics of the assumed resource 

limitations. 

The paradigm of the Psychological Refractory Period (PRP) was established by 

authors assuming a structural processing limitation in the cognitive system (Pashler, 1994; 

Welford, 1952). In comparison to the other dual-task paradigms, the PRP-paradigm has the 

advantage of being very precise with respect to the definition of the ongoing tasks and the 

underlying processing stages. As will be seen later, these properties also form the basis for the 

precise investigation of the neural mechanisms involved in dual-task processing. 

In the PRP paradigm (see Figure 1), two stimuli (S1, S2) are presented with varying 

stimulus onset asynchronies (SOA) and participants are required to respond to both stimuli 
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with distinct motor responses (R1, R2). Usually, participants are required to respond to the 

stimuli according to the presentation order, thus giving priority to S1. The most important 

finding with the PRP-paradigm is that the processing times for the second of the two tasks 

(Task 2) increase with decreasing SOA while processing times for the first task (Task 1) are 

widely unaffected by the SOA manipulation. Telford (1931) first observed this behavioral 

effect and called it the effect of the Psychological Refractory Period, in analogy to the neural 

refractory period which relates to the inability of a neuron to elicit two action potentials in 

short succession. 

 This idea of the PRP was further specified by Welford (1952) and more recently by 

Pashler (1994). These authors related the PRP effect to a processing bottleneck inherent to the 

cognitive system. Assuming that information processing can be divided into several 

processing stages (Sternberg, 1969), the bottleneck assumption postulates that certain 

processing stages can proceed in parallel in two temporally overlapping tasks whereas other 

stages are capacity-limited and can only be processed serially. Accordingly, at high temporal 

 

Figure 1. The central bottleneck model in the PRP paradigm (Pashler, 1994). Two stimuli (S1, S2) are presented 

with different temporal overlaps (stimulus onset asynchrony, SOA) and participants are required to respond with 

two motor responses (R1, R2). The central bottleneck model assumes that at short SOAs response selection (RS) 

is temporally interrupted in task 2 until task 1 has finished. Stimulus perception (P) and initiation of the motor 

response (MR) can be processed in parallel in both tasks. 
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overlap, the two tasks of a dual-task situation compete for access to these capacity-limited 

processing stages. This competition for attentional processing capacities at a putative 

processing bottleneck in dual-task situations is also called dual-task interference. The 

bottleneck model relates the increased reaction times in Task 2 (RT2) to a temporal 

interruption of Task 2 processing during the processing of the bottleneck stage in Task 1. 

 According to the so-called “first-come first-served” principle (Pashler, 1994), the task 

that reaches the capacity-limited processing stage first – usually Task 1 - gains access to this 

processing stage and the processing of  the other task is delayed. Accordingly, RT1 is usually 

widely unaffected by the SOA manipulation whereas the duration of the interruption in Task 2 

and the resulting RT2 depend on the temporal overlap of the two tasks. 

Note that there exists an ongoing debate about the location and the robustness of the 

dual-task bottleneck within the information processing stream. The original central bottleneck 

model by Pashler (1994) postulated that the bottleneck is located at the response selection 

stage (McCann & Johnston, 1992; Pashler, 1994; Schubert, 1999). However, there is also 

some evidence for capacity limitations at a perceptual (Arnell & Duncan, 2002; Hein & 

Schubert, 2004; Marois & Ivanoff, 2005) or motor stage (Karlin & Kerstenbaum, 1968; 

Meyer & Kieras, 1997; Schumacher et al., 2001). Although the studies of the present 

dissertation do not aim at resolving this debate, evidence for the consistency of the response 

selection bottleneck may be drawn from all three presented studies. 

Importantly, Pashler (1994) assumed that the transition from Task 1 bottleneck 

processing to Task 2 bottleneck processing is passive. That is, as soon as Task 1 has finished, 

Task 2 processing automatically continues without the recruitment of additional control 

processes. This assumption implies an important prediction for the neural implementation of 

dual-task processing. If no additional control processes are involved in dual-task processing, 

one might not expect additional brain regions to be involved in dual-task processing 

compared to the processing of the component single tasks. Previous empirical findings 
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regarding this prediction will be reviewed in chapter 2.2.3. In addition, the presence of dual-

task-specific brain activity will also be tested empirically in Study 1 of this dissertation. As 

will be outlined in the next section, more recent dual-task models conquer this view of passive 

bottleneck processing. These models postulate the involvement of active cognitive control 

mechanisms that coordinate the dual-task processing stream. 

  

2.1.2 Cognitive control in the dual-task paradigm 

Recent dual-task models assume the involvement of additional processes related to the active 

control of the processing stream at and before the bottleneck (De Jong, 1995; Meyer & 

Kieras, 1997; Logan & Gordon, 2001; Sigman & Dehaene, 2006). This idea was initially 

formulated to explain for the finding that participants can voluntarily switch the processing 

order in a dual task and do not solely depend on the presentation order (De Jong, 1995, Meyer 

& Kieras, 1997). The influence of strategic and voluntary control in dual-task processing was 

then further investigated and tested in computational dual-task models. 

According to these models, the control of the task order in a dual-task situation 

includes the planning and coordination of the appropriate sequence of actions in two tasks 

prior to stimulus presentation and during bottleneck processing itself. Recently, Sigman and 

Dehaene (2006) proposed a computational model for PRP situations where the serial 

processing of the two tasks at the bottleneck originates from several control mechanisms. 

First, an attentional task setting mechanism is involved in the planning and coordination of 

the appropriate action sequence. In addition, an attentional switching mechanism enables the 

task processes in the second task to proceed after the first task has passed the bottleneck. This 

is very similar to the conceptions by Logan and Gordon (2001) and also Meyer and Kieras 

(1997) proposed similar mechanisms in their production-rule-based EPIC (Executive-

Process/Interactive Control) architecture (see also Luria & Meiran, 2003). Taken together, the 



 7

postulated control mechanisms serve the flexible, goal-directed behavior required to deal with 

the interference of two tasks in a dual-task situation.  

Although the proposed computational models provide a detailed description of the 

involved control mechanism, there is only few direct evidence from cognitive psychology for 

such control processes (but see De Jong (1995) or Luria & Meiran (2003) for exceptions).  

However, various neuroimaging studies tested the basic assumption of these active 

control models, namely that additional processing requirements are involved in dual-task 

situations compared to single-task ones. Additional processing requirements should be 

reflected in additional effort in the brain in dual-task situations compared to single-task 

situations. The finding of increased brain activity during dual-task processing would provide 

converging evidence for the involvement of additional active control processes in the 

processing of dual tasks and may be difficult to reconcile with the assumption of a passive 

processing bottleneck (Pashler, 1994). It would also provide the basis for more detailed 

investigations regarding the nature of these control mechanisms. A candidate brain region for 

the neural implementation of active control mechanisms in dual tasks may be the lateral 

prefrontal cortex which has been consistently associated with cognitive control mechanisms 

in single tasks (Miller & Cohen, 2001; Norman & Shallice, 1986; Passingham, 1993). 

 

2.2 The functional role of the lateral prefrontal cortex (lPFC) 

2.2.1 The lPFC and cognitive control 

Several authors have argued that cognitive control mechanisms are the key function of the 

lPFC (Miller & Cohen, 2001; Norman & Shallice, 1986, Passingham, 1993; Petrides, 2000). 

Cognitive control describes the ability to coordinate thoughts and actions in accordance with 

internal goals in order to elicit coordinated and purposeful behavior (Fuster, 1989; Miller & 

Cohen, 2001; Koechlin, Ody, & Kouneiher, 2003; Norman & Shallice, 1986). As we are 

permanently confronted with multiple options for behavior, it is important that we control 
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which behaviors are executed in which order and which behaviors are not executed at all.  On 

the one hand, we have to flexibly overcome reflexive and automatic behavior that interferes 

with intended goal-directed behavior. On the other hand, we also need to maintain and 

coordinate multiple relevant information streams according to our internal goal hierarchies. 

These two mechanisms – the inhibition of interfering prepotent response tendencies including 

the attentional re-focussing on relevant information as well as the maintenance and 

coordination of multiple relevant information streams as it is necessary in dual-task 

processing – both constitute important aspects of cognitive control.  

The crucial role of the lPFC for cognitive control is supported by ample empirical 

evidence from single-cell recordings in monkeys, neuropsychological patients and 

neuroimaging studies (for the neuroanatomical landmarks of the lPFC, see Figure 2). 

 In single-cell recordings in monkeys, lateral prefrontal neurons have been shown to 

have the capability to maintain relevant information (die Pellegrino & Wise, 1991; Fuster & 

Alexander, 1971; Goldman-Rakic, 1987; Kubota & Niki, 1971), even in the face of 

distracting information (Miller, Erickson, & Desimone, 1996). At the same time, lateral 

prefrontal neurons are highly flexible and can adopt various task rules (Bunge, Kahn, Wallis, 

Miller, & Wagner, 2003;  Muhammad, Wallis, & Miller, 2006; Wallis, Anderson, & Miller, 

2001) even including contingencies on a higher-order level (Shima, Isoda, Mushiake , & 

Tanji, 2007). These properties of the lateral prefrontal neurons form the basis for flexible, 

goal-directed behavior. 

In accordance with these findings in monkeys, human patients with lateral prefrontal 

lesions show severe deficits in daily-life behaviors and experimental paradigms involving 

cognitive control. This includes deficits in the maintenance of information against distractor  
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Figure 2: Cytoarchitectonic map by Brodmann (1909). Lateral view. Lateral frontal cortex is colored. red: motor 

cortex; orange: premotor cortex; blue: prefrontal cortex. Numbers refer to the Brodmann areas. (taken from  

Barbas, Ghashghaei, Rempel-Clower, & Xiao, 2002). 

The lateral prefrontal cortex is part the frontal lobes which comprise the most anterior part of the cerebral 

hemispheres. Identification and classification of subregions within the frontal lobes are based on morphological 

features like surface landmarks and microscopic analyses of the constituent neurons resulting in 

cytoarchitectonic maps. The depicted cytoarchitectonic map by Brodmann (1909) is one of the most widely 

accepted. Three primary functional subregions of the frontal lobes can be identified on the caudal-to-rostral axis 

of the lateral frontal surface: motor cortex, premotor cortex and prefrontal cortex. In addition, medial frontal 

cortex has its own subdivisions, interacting strongly with the lateral frontal regions. The primary motor cortex 

(Brodmann’s area (BA) 4) is the smallest and most homogeneous of these regions, mainly stretching along the 

central sulcus. Rostral to BA4, the lateral premotor cortex (BA 6) extends along the precentral sulcus and gyrus. 

Often, BA 8 (frontal eye fields) and BA44 (pars opercularis) are also counted to the lateral premotor cortex. All 

cortical regions anterior to the premotor cortex are called the prefrontal cortex (PFC). The PFC may be 

subdivided into several subregions: (1) dorsolateral PFC (dlPFC, BA  9/46), (2) ventrolateral PFC (vlPFC, BA 

45/47), (3) anterior PFC (aPFC, BA 10), (4) orbitofrontal Cortex (OFC, BA 11/12/13/14/47), (5) medial PFC 

(mPFC, BA 24/32). The dlPFC and the vlPFC can be anatomically separated as the neural substrate dorsal and 

ventral to the inferior frontal sulcus (IFS), respectively. It will be referred to these two subregions stretching 

along the three frontal gyri (superior, middle and inferior frontal gyrus), when using the term “lateral prefrontal 

cortex”. 
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interference (Chao & Knight, 1995) as well as the inability to flexibly switch between task 

representations (Aron, Monsell, Sahakian, & Robbins, 2004; Stuss, Floden, Alexander, 

Levine, & Katz, 2001). The latter is also exemplified in the Wisconsin Card Sorting Test 

(WCST; Grant and Berg, 1948), a prominent test for lateral prefrontal functioning. In the 

WCST, subjects are required to place the top card of a card deck under one of four target 

cards according to a sorting rule. The sorting rule, however, is only indicated implicitly by the 

experimenter’s feedback about the correctness of the current response. After ten consecutive 

correct responses the sorting rule changes unbeknownst to the subject. Patients with lateral 

prefrontal damage are frequently unable to use the feedback of the experimenter in order to 

switch to the newly relevant sorting rule. They perseverate on the previous rule, unable to 

flexibly change their behavior according to the new context (Barceló & Knight, 2000; Stuss et 

al., 2000). Patient studies like this support the importance of lateral prefrontal regions for 

cognitive control. Note, however, that the WCST is a very complex task consisting of various 

cognitive components so that no direct inference about the functionality of the lPFC can be 

made solely based on such neuropsychological findings. Importantly, the involvement of the 

lPFC in specific components of the WCST was further specified in neuroimaging studies that 

showed increased lPFC activity particularly related to rule shifts in the WCST (Monchi, 

Petrides, Petre, Worsley, & Dagher, 2001; Konishi et al., 1998; Lie, Specht, Marshall, & Fink, 

2006). Thus, the flexible switching between task rules seems to be the crucial component 

associated with the lateral prefrontal cortex in the WCST. 

Similarly, a vast amount of fMRI studies showed that the lPFC is related to cognitive 

control in various task situations. In particular, this includes the maintenance of task rules in 

the face of distraction (de Fockert, Rees, Frith, & Lavie, 2001; Sakai & Passingham, 2003) 

and the control of interference processing in single tasks like the Stroop task (Banich et al., 

2001; Zysset, Müller, Lohmann, & von Cramon, 2001), in task switching (Braver, Reynolds, 

& Donaldson, 2003; Dove, Pollmann, Schubert, Wiggins, & von Cramon, 2000), the Simon 
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Task (Fan, Flombaum, McCandliss, Thomas, & Posner, 2003; Liu, Banich, Jacobson, & 

Tanabe, 2004), the Flanker paradigm (Casey et al., 2000; Hazeltine, Poldrack, & Gabrieli, 

2000) and incompatibly mapped choice reaction tasks (Schumacher & D’Esposito, 2002; 

Schumacher, Elston, & D’Esposito, 2003). Common to all these paradigms is the requirement 

to suppress prepotent response tendencies interfering with the required responses and thus 

flexibly switch to another stimulus dimension or stimulus-response mapping. Thus, all these 

paradigms tag cognitive control as defined above, supporting the view that the lPFC is 

crucially involved in cognitive control. 

 The neural mechanisms of cognitive control, in particular the roles of conflict 

monitoring (Botvinick, Braver, Barch, Carter, & Cohen, 2001) and top-down attentional 

control (Hopfinger, Buonocore, & Mangun, 2000) are recently debated. The role of the lPFC 

in cognitive control in such interference situations can be understood as the biasing of task 

processing in posterior brain regions to resolve interference (Badre & Wagner, 2004; Miller & 

Cohen 2001). Importantly, there exists recent evidence for the presence of conflict-contingent 

amplification of activity in task-relevant regions compared to task-irrelevant regions (Egner & 

Hirsch, 2005). Egner and Hirsch (2005) used a variant of the Stroop paradigm and compared 

so-called high-control compared to low-control situations. High-control situations were 

related to conflict adaptation effects (see also Kerns et al., 2004) for recent Stroop trials 

preceded by an incongruent Stroop trial (high control) compared to precedence by a congruent 

Stroop trial (low control). Reduced behavioral interference effects for incongruent trials in 

high-control situations was associated with cortical amplification of activity in task-relevant 

sensory brain regions. Even more importantly, reduced behavioral interference effects were 

also associated with increases in functional coupling beween task-relevant regions and the 

lPFC. Accordingly, the top-down modulation of task-relevant regions exerted by the lPFC 

seems to be an important mechanism for dealing with interference between relevant and 

irrelevant task representations. 
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 As outlined above, cognitive control is also important in dual tasks, controlling the 

processing associated with the putative bottleneck. In dual-task situations, however, two 

stimuli are both relevant for subsequent behavior within the same task trial. This renders the 

task situation more complex as both task representations are relevant and attention to the 

second stimulus must also be present to some degree so that the second task can still be 

performed correctly. Both task streams have to be maintained and coordinated so that they 

both can find expression in behavior. Although there is an emerging literature on the 

involvement of the lPFC in dual–task processing, only little is known about how general this 

involvement is and how exactly the lPFC exerts cognitive control in such dual-task situations. 

The specification of the functional role of the lPFC in cognitive control in dual tasks is the 

primary aim of this dissertation.  

 

2.2.2 lPFC involvement in dual tasks - Is the whole more than the sum of its parts? 

Early neuroimaging studies on dual-task processing in the lPFC (Adcock, Constable, Gore, & 

Goldman-Rakic, 2000; Bunge, Klingberg, Jacobsen, & Gabrieli, 2000; D’Esposito et al., 

1995; Goldberg et al., 1998; Jaeggi et al., 2003;  Just et al., 2001; Klingberg, 1998; Koechlin, 

Basso, Pietrini, Panzer, & Grafman, 1999;  Smith et al., 2001)  were mainly concerned with 

the question whether there exist regions in the lPFC related to additional processing 

requirements in dual tasks or not. In most of these studies, rather complex tasks like mental 

rotation, semantic categorization or the reading span test were administered either separately, 

as single tasks, or temporally overlapping, as dual tasks. The comparison of the activity 

changes in dual-task blocks with the sum of the single-task blocks was used as an indicator 

whether the “whole is more than the sum of its parts” (Duncan, 1979), that is, whether 

additional dual-task-specific activity is elicited in dual tasks or not. Whereas some of these 

studies did not find dual-task-specific activity in the lPFC (Adcock et al., 2000; Bunge et al., 

2000; Klingberg, 1998; Smith et al., 2001) others found either increased dual-task activity in 



 13

the lPFC compared to the single tasks (Jaeggi et al., 2003) or even additional lPFC regions 

involved in dual-task blocks that were not involved supra-threshold in single-task blocks 

(D’Esposito et al., 1995; Koechlin et al., 1999).  

These divergent results on the involvement of the lPFC in dual-task processing might 

have several reasons. Most likely, the complexity of the applied component tasks leaves many 

degrees of freedom in the way the dual task is performed by the participants in the different 

studies - with more or less additional processing requirements being involved. In addition, the 

rather complex component tasks in these studies might already involve cognitive control 

processes associated with lPFC regions that overlap with the potential dual-task-related 

control regions. Accordingly, no additional dual-task-related activity could show up in the 

comparison of the dual-task blocks with the single-task blocks. 

More recent fMRI studies on the functional neuroanatomy of dual-task processing 

therefore applied better controlled dual tasks using the PRP paradigm (Collette et al., 2003; 

Erickson et al., 2005a; Schubert & Szameitat, 2003). As outlined above, the advantage of the 

PRP paradigm is that the applied choice reaction tasks are well-defined and that there exist 

precise assumptions regarding the underlying processing stream. When comparing the activity 

changes in the lPFC associated with two choice reaction tasks performed as single versus dual 

tasks, clear evidence for a dual-task-specific involvement of the lPFC was found (Schubert & 

Szameitat, 2003; Szameitat et al., 2002).  The consistently activated dual-task-related regions 

were located in regions around the inferior frontal sulcus (IFS) and in regions of the middle 

frontal gyrus (MFG). Schubert & Szameitat (2003) related this activity to mechanisms of 

interference control in dual tasks. In addition, Erickson et al. (2005a) showed that dual-task-

related regions in the lPFC are not just related to differences in task preparation between dual-

task and single-task blocks. In their study, Erickson et al. (2005a) mixed dual-task and single-

task trials within the same task blocks such that task preparation was identical for both task 

types. Still, increased activity in the lPFC, particularly in the left posterior lPFC and the 
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bilateral IFG was found in dual-task trials compared to single-task trials. Applying the well-

controlled PRP paradigm, these studies show consistently that the lPFC is involved in dual-

task processing.  

However, for several reasons, no unequivocal inferences can be made from these 

studies with respect to the underlying cognitive mechanisms associated with the dual-task-

related lPFC activity. 

First, it remains unclear which type of interference is reflected in the additional 

activity in the lPFC. As outlined above, interference can emerge at different processing stages 

– related to perception, response selection or the motor response. The studies above do not 

provide unequivocal evidence that additional processing requirements reflected in the 

increased lPFC activity are related to the processing of a response selection bottleneck. These 

studies used either overlapping stimulus modalities (Erickson et al., 2005) or overlapping 

response modalities (Schubert & Szameitat, 2003). Therefore, the obtained dual-task-related 

activity changes in the lPFC might also be related to the resolution of perceptual or motor 

interference instead. In chapter 2.2.3, this possibility will be discussed in detail. In Study 1 of 

this dissertation, these alternative sources of dual-task-related activity in the lPFC will be 

eliminated by using component tasks without any overlap on a perceptual or motor level. The 

finding of dual-task-related activity in such a task situation could then be attributed to the 

processing associated with the response selection bottleneck. 

Second, comparing dual-task blocks with single-task blocks may reflect any cognitive 

difference between these types of blocks. Besides the outlined mechanism of task order 

control, this may also include differences in working memory load1 or divided attention which 

are clearly more demanding in dual-task blocks. In order to understand the functionality of the 

dual-task-related lPFC regions in more detail, the underlying cognitive mechanisms need to 

                                                 

1 This is not the case for the Erickson et al. (2005) study 
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be identified. For this purpose, in all three studies of this dissertation, parametric fMRI 

designs are used (Braver et al., 1997). By manipulating the difficulty of specific cognitive 

functions within different dual-task blocks, specific hypotheses with respect to the 

functionality of the lPFC in dual-task processing can be tested (see also chapter 2.2.4). In 

addition, in Study 2 different control functions distinguishing dual tasks from single task were 

manipulated within the same experiment, giving the possibility to compare the localization of 

these functions within the lPFC.  

Third, focusing exclusively on the lPFC when investigating the functional 

neuroanatomy of dual-task processing might provide an incomplete picture of the involved 

neural mechanisms. As outlined above, the lPFC interacts strongly with posterior regions to 

control task processing according to internal goals in single tasks. The investigation of the 

functional integration between lPFC and posterior task-relevant regions in dual-task situations 

is the aim of Study 3. 

 

2.2.3 Types of interference processing in the lPFC (Study 1) 

As outlined above, the studies reported so far do not indicate which type of interference is 

associated with the dual-task-related lPFC activity. The involvement of processing related to 

perceptual or motor interference cannot be excluded. Some more recent dual-task 

neuroimaging studies addressed this question (Dux et al., 2006; Herath et al., 2001; Jiang, 

2004). Jiang (2004) and Herath et al. (2001) investigated this by using variants of the PRP 

paradigm to parametrically manipulate certain aspects of dual-task processing. Both studies 

found increased activity in high-interference dual-task situations at short SOAs compared to 

long SOAs in a region in the posterior lPFC (plPFC). However, Jiang (2004) found the SOA 

effect exclusively for conditions with both stimuli presented in the periphery of a circular 

display, thus requiring the simultaneous allocation of attention in space. Accordingly, Jiang 

(2004) concluded that this region in the plPFC is related to the resolution of perceptual 
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interference rather than to the resolution of cognitive bottleneck interference in dual tasks. In 

the study by Herath et al. (2001), however, stimuli in different perceptual modalities (visual, 

somatonsensory) were presented. The finding of an SOA-related activation in the plPFC in 

that study excludes the possibility that exclusively perceptual interference is related to plPFC. 

In addition, it is rather unlikely that interference at a cognitive level is associated with the 

activity in that study, as simple detection tasks were used which seem not to require response 

selection and therefore do not interfere at a cognitive level of processing (Schubert, 1999). 

Consequently, Herath and colleagues associated this region with the processing of 

interference at a motor level. Although these studies excluded alternative accounts for dual-

task-related lPFC activity due to their parametric manipulations of dual-task interference, no 

direct evidence for interference at a central response selection stage was provided so far. Only 

by excluding an overlap of stimulus- and response modalities of the component tasks, direct 

evidence for an association of dual-task-related lPFC activity to the processing of the 

response selection bottleneck can be obtained  Study 1 of this dissertation applied such an 

approach, using non-overlapping modality pairings for the component tasks2.  In addition, the 

degree to which these non-overlapping modality pairings are compatible with each other was 

                                                 

2 Only recently, after the publication of Study 1 of this dissertation, additional evidence for the association of the 

plPFC with the response selection bottleneck was provided by Dux et al. (2006). These authors also used non-

overlapping modalities in their component task of a PRP paradigm applying rapid time-resolved fMRI 

acquisition. In particular, they tested the serial postponement prediction of the central bottleneck model (Pashler, 

1994). Serial postponement relates to the idea that response selection in Task 2 is delayed at short SOAs as long 

as response selection is ongoing in Task 1. This delay is longer, the longer response selection takes in Task 1. In 

contrast, at long SOAs no such effect of the duration of response selection in Task 1 on RT2 should be present. 

Dux et al. measured signal latencies in plPFC regions that were related to response selection at short and long 

SOAs. The comparison of trials with slow versus fast RT1 revealed a differential pattern at short compared to 

long SOA consistent with the serial postponement prediction. That is, plPFC peak latency depended on RT1 

speed at short SOA with prolonged activity for slow RT1. No similar effect was found at long SOA. This result 

further supports that the plPFC is associated with the central processing bottleneck characterized by the inability 

to perform two decisional processes at the same time. 
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manipulated in Study 1. By comparing dual-tasks with modality-compatible (e.g. visual-

manual and auditory vocal) and modality-incompatible (e.g. visual-vocal and auditory 

manual) tasks as component tasks, an additional manipulation of the degree of central task 

interference was introduced (Hazeltine, Ruthruff, & Remington, 2006). As shown by 

Hazeltine and colleagues (2006), different pairings of non-overlapping stimulus-response 

modality pairings may differ with respect to content-dependent interference. That is, athough 

there is no overlap in perceptual or motor processing, interactions between the task-related 

central codes may differ. This would indicate that central interference is not generic, but 

depends on the task contents. 

To investigate the neural effects of such a manipulation, we used individually 

determined regions of interest in the IFS, obtained from the dual-task vs. single-task-task 

contrast. In so far, Study 1 can provide crucial information regarding the question whether the 

processing of  central bottleneck interference is associated with the lPFC during dual-task 

processing. 

 

2.2.4 Neural implementation of dual-task-related cognitive control in the lPFC 

(Study 2) 

Surprisingly little is known about the neural implementation of control processes that are 

involved in dual-task processing. As outlined above, recent dual-task models assume that 

active control processes are involved in the coordination of the dual-task stream by setting 

task priorities and switching between the two task streams (Logan & Gordon, 2001; Meyer & 

Kieras, 1997; Sigman & Dehaene, 2006). These mechanisms of task order control serve the 

optimal task performance despite of the involved bottleneck and may contribute essentially to 

the dual-task-specific lPFC activity that was found previously. 

 To my knowledge, only the two studies by Szameitat and colleagues (2002; 2006) 

addressed the question whether there are neural correlates of dual-task-related control 
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processes in the lPFC. Szameitat et al. (2002) used a version of the PRP paradigm and 

compared the fMRI signals between dual-task blocks with different demands on task order 

control. In their dual-task paradigm, participants performed a visual-manual and an auditory-

manual choice reaction task in every trial. The two tasks were presented in dual-task blocks 

with either random temporal order of the two component tasks or in blocks with fixed order. 

Within random-order blocks, the task order of the two component tasks changed randomly 

from trial to trial. Accordingly, participants needed to re-arrange and control the processing 

order permanently in order to perform the dual tasks in the correct temporal order. The 

increased demands on the computational processes related to task order control led to 

increased reaction times and error rates in random-order compared to fixed-order blocks (see 

also De Jong, 1995; Luria & Meiran, 2003). Even more importantly, when comparing the 

activity changes in random-order and fixed-order blocks, Szameitat et al. (2002) found an 

extended fronto-parietal network with bilateral activation foci in the lPFC. The lPFC 

activation was mainly located in regions surrounding the left and right IFS extending from 

anterior to posterior portions of this sulcus and dorsally into the MFG. These activation foci 

overlapped closely with the activation foci obtained when subtracting the signal changes in 

single-task blocks from those in dual-task blocks as indicated in an additional analysis of the 

same study. Szameitat et al. (2002) concluded that these dual-task-related regions in the lPFC 

are associated with the control of the task order in dual-task situations.  

Even stronger evidence for this conclusion comes from their event-related study 

(Szameitat et al., 2006), where task order control was manipulated within the same task 

blocks. In detail, Szameitat et al. (2006) compared the activity changes in so-called same-

order and so-called different-order dual-task trials. While in same-order trials the processing 

order of the two component tasks in a given trial N (e.g., visual then auditory task) was 

identical to trial N-1, the order of the two component tasks was reversed between trial N and 

N-1 in different-order trials. According to the assumption that mechanisms of task order 
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control may rely on the episodic trace of the task order in the previous trial, task order control 

difficulty was expected to be increased in different-order compared to same-order trials (De 

Jong, 1995; Luria & Meiran, 2003). As expected, the processing times and the error rates 

were elevated in different- compared to same-order dual-task trials and, even more 

importantly, these differences were associated with two activation peaks in the lPFC. These 

were located in the right MFG and along the left IFS overlapping with the activity peaks from 

Szameitat et al. (2002). Thus, there is strong evidence that task order control is one cognitive 

mechanisms that is associated with dual-task-related regions in middle and posterior portions 

of the lPFC. 

 However, the attribution of dual-task-related lPFC activity to task order control 

processes was recently objected to by other authors (Jiang, Saxe, & Kanwisher., 2004). Jiang 

et al. (2004) noted that the demands to maintain additional task set components in working 

memory might cause the additional lPFC activity in dual-task compared to single-task 

situations. According to this argument, task order control might not be the only factor 

underlying dual-task-specific lPFC activity. The maintenance of additional task set 

components may also be crucial. If this is the case, it would be important to investigate 

whether both functions, task order control and task set maintenance, use overlapping or non 

overlapping neural substrate in the lPFC. In Study 2, we manipulated task order control and 

task set maintenance orthogonally to identify the contribution of both functions to lPFC 

activity during dual-task performance. 

 

2.2.5 Interaction of the lPFC with other brain regions during dual-task processing 

 (Study 3) 

The understanding how the lPFC interacts with other task relevant regions is crucial for the 

understanding functionality of the lPFC in dual-task processing.  As Miller & Cohen (2001) 
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stated, an essential function of the lPFC is the biasing of signals to other brain regions to 

guide the flow of activity along neural pathways in accordance with internal goals.  

Of specific importance for the understanding of this top-down control is the pattern of 

connectivity of the lPFC subregions with the rest of the human brain (Barbas et al., 2002; 

Petrides & Pandya, 1999). All PFC regions, including the lPFC, have distinct patterns of 

cortical connectivity with other regions throughout the brain (ses also Fuster, 1989 and 

Goldman-Rakic, 1987). These connections are mostly reciprocal and enable prefrontal regions 

to integrate various types of information and to exert a top-down influence on other regions in 

order to coordinate information processing across a wide range of the central nervous system 

(Desimone & Duncan, 1995; Miller & Desimone, 1994). 

It was outlined above (chapter 2.2.1) that  the top-down modulation of task-relevant 

regions has been shown to be an important mechanism for dealing with interference between 

relevant and irrelevant task representations in single-task situations (Egner & Hirsch, 2005). 

Other studies using measures of functional connectivity also support the importance of top-

down control for flexible, goal-directed behavior (Abe et al., 2007; Erickson, Ringo Ho, 

Colcombe, & Kramer, 2005b; Gazzaley, Rissmann, & D’Esposito, 2004).  

However, for dual tasks where two task representations are simultaneously relevant 

there is no evidence yet whether and how the lPFC interacts with task-relevant regions. 

According to the computational dual-task models by Sigman & Dehaene (2006) or Logan and 

Gordon (2002), so-called attentional task setting mechanisms might be crucial for the 

observed behavioral pattern present in the PRP-effect. In Study 3, the interactions of the lPFC 

with posterior task-relevant regions as well as the activity pattern in these task-relevant 

regions associated with the PRP effect were investigated. For this purpose a localizer 

approach  (see chapter 3.2.2) and functional connectivity measures (see chapter 3.2.3) were 

applied in Study 3. 
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2.3  Summary 

A predominant function of the lPFC is cognitive control – the ability to coordinate thoughts 

and actions in accordance with internal goals in order to elicit coordinated and purposeful 

behavior. Dual-task processing is unique in that sense, as two internal goals are 

simultaneously relevant and need to be coordinated in order to successfully perform both 

tasks. The reviewed literature shows (1) that the lPFC is involved dual-task processing, 

(2) that different types of dual-task interference are related to the lPFC and (3) that active 

mechanisms of task order control might underlie dual-task-related activity in the lPFC. 

However, there are several open questions with respect to the exact functional role of the 

lPFC in dual-task processing which will be addressed in the present dissertation. These 

concern the generality of previous findings, the dissociability of different control processes in 

the lPFC and the interaction of the lPFC with posterior task-relevant brain regions. 

  Before summarizing the specific research questions and results of the three studies of 

this dissertation, I will give a short overview on the applied methods in these studies. 

 

3  General Method: Functional Magnetic Resonance Imaging (fMRI) 
The advent of neuroimaging methods, in particular functional Magnetic Resonance 

Imaging (fMRI) opened the possibility to non-invasively map cognitive functions in the 

healthy human brain. The principle of fMRI is to measure task-evoked physiological changes 

in blood flow and local metabolism that correlate with the related neural activity. The 

underlying physiological and statistical procedures will be shortly summarized in the 

following sections. 

 

3.1 The blood-oxygenation level dependent (BOLD) signal 

What kind of physiological signal is measured with fMRI? Neural activity leads to an 

increased metabolism – the consumption of glucose and oxygen, which is needed to restore 
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concentration gradients in the neuron that are changed following neural activity. Metabolites 

are supplied by the vascular system with one essential aspect being the arterial blood supply 

of oxygenated hemoglobin. The increase in oxygenation usually exceeds the actual demand in 

the respective brain region. Early research on the MRI signal demonstrated that deoxygenated 

hemoglobin is paramagnetic while oxygenated hemoglobin is diamagnetic. The different ratio 

of oxygenated and deoxygenated blood after neural activity leads to temporal local field 

inhomogenities that are reflected in the T2* decay time which crucially depends on the field 

homogenity. It has been shown that these differences in magnetic properties after neural 

activity can be measured with MRI (Ogawa, Lee, Kay, & Tank, 1990). This effect was named 

the BOLD (blood-oxygenation-level-dependent) effect which was then applied to functional 

measurements with fMRI (Bandettini, Wong, Hiks, Tikofsky, & Hyde, 1992; Kwong et al., 

1992; Ogawa et al., 1992). Thus, the BOLD contrast describes the difference in MRI signal 

on T2*-weighed images as a function of the amount of deoxygenated hemoglobin. 

The BOLD response to neural activity consists of a short onset delay, a rise to a peak 

after a few seconds, a return to baseline, and a prolonged undershoot. Usually, this takes 

about 5-12 seconds, excluding the undershoot (Aguirre, Zarahn, & D’Esposito, 1998; Friston, 

Frith, Turner, & Frackowiak, 1995a; Miezin, Maccotta, Ollinger, Petersen, & Buckner, 2000). 

This is also called the hemodynamic response function (HRF). Amplitude and latency of the 

HRF depend on the strength of the evoking stimulus on the one hand but also on the region 

where it is measured. In addition, high inter-individual variability in the shape of the function 

has been measured (Aguirre et al., 1998; Handwerker, Ollinger, & D’Esposito, 2004). 

Depending on the specific research question, different experimental designs can be 

used to increase the signal-to-noise ratio in the task-evoked BOLD-signal. In blocked designs, 

the different experimental conditions are presented block-wise with high task frequency 

within one block. That way a very strong signal that develops over the course of the block can 

be measured. In event-related designs, single trials are presented within the same blocks with 
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longer inter-stimulus intervals (ISI). In event-related designs, the HRF can be determined for 

every task trial individually, giving the possibility to compare trials within one task block and 

to eliminate error trials. However, event-related designs have usually smaller detection power, 

e.g. the ability to detect an activation, than block designs. Study 1 and 2 of this dissertation 

used pure blocked experimental designs; Study 3 was measured in a mixed block and event-

related design. 

 

3.2  Statistical analysis 

3.2.1 Data processing 

As outlined above, the functional task-related measurements consist of T2* images that are 

acquired on a slice-by-slice basis in high temporal frequency (1.5- 2.2 seconds per brain 

volume in the present studies) in small 3-dimensional units (voxels) in the brain. 

Before the actual statistical analysis of the task-related BOLD-signal changes in 

certain brain regions, a couple of preprocessing steps are performed on these time series data 

depending on the applied experimental design. Using the software SPM2 

(http://www.fil.ion.ucl.ac.uk/spm/), in the present studies images were slice-time corrected to 

account for differences in acquisition time between slices (Study 3 only) and motion corrected 

(all studies) and unwarped (Study 3 only) to account for movement of the participants in the 

scanner. The images were then spatially normalized into the standard MNI atlas space using 

the high-resolution T1-weighted anatomical images of every participant and applying the 

normalization parameters to the functional images after having coregistered those to the 

anatomical images. Then, the functional data were smoothed with an 8-mm FWHM Gaussian 

kernel to suppress residual differences in functional and gyral anatomy during inter-subject 

averaging. In addition, a high-pass filter was applied during analysis to eliminate residual 

low-frequency noise. The data were statistically analysed using the general linear model 

(GLM) for serially auto-correlated data (Friston et al., 1995b). In the GLM the given 
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experimental design is correlated with the brain activity in every voxel in the brain. For that 

purpose the predictors (regressors) are convolved with a given HRF. The obtained parameter 

estimates (beta values) per voxel describe the degree to which this voxel correlates with the 

given experimental design. That way, voxels are identified that show increased BOLD-signal 

changes under certain task contexts. These signal increases are then tested for statistical 

significance in a second-level analysis across all participants, either in comparison to a 

baseline condition or to another task condition. Usually two task conditions are compared to 

eliminate specific cognitive processes (Braver et al., 1997). The resulting statistical maps can 

then be overlaid onto normalised anatomical images to locate the significant activities in the 

brain. That way, regions are identified on a whole-brain basis that are related to the 

manipulated cognitive processes.  

 

3.2.2 Regions-of-interest (ROI) - Analysis and Localizer Technique 

In addition to the statistical analyses on a whole-brain level, so-called regions-of-interest 

(ROI) analyses were applied in all three studies. The goal of an ROI-analysis is to test specific 

hypotheses about the pattern of task-related activity in a particular brain region. A-priori ROIs 

can be identified either as anatomical or/and as functional ROIs. For anatomical ROIs, 

usually, structural T1 images are used to draw the ROIs on specific sulci, gyri or other 

subcortical structures. The mean signal changes or the related parameter estimates from 

voxels included in these regions are then tested with respect to the formulated hypothesis. 

Another powerful approach that was applied in the present studies to test the effects of 

the parametric manipulations is to use functional ROIs. The advantage of functional ROIs is 

that they can take functional subdivisions within anatomical regions into account. These ROIs 

are based on functional criteria such as the results of a whole-brain analysis. Some researchers 

use the group activity peaks from other studies as centers of ROI-masks for their analyses. 

Another way that takes inter-individual variabilities in functional neuroanatomy better into 
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account, is to use the individual ROIs determined within the participants who also perform the 

actual experiment. This approach was applied in the present three studies. It is also called the 

localizer technique. Either prior to the main experiment (Saxe, Brett, & Kanwisher, 2006) or 

based on another functional contrast within the main experiment (Friston, Rotshtein, Geng, 

Sterzer, & Henson, 2006), the functional ROIs are isolated from a contrast that eliminates the 

respective region of interest (see for example Nieto-Castanon, Ghosh, Tourville, & Guenther, 

2003). 

 ROI-approaches have the advantage that the number of statistical comparisons is 

greatly reduced compared to the whole-brain analysis, thus minimizing the need for 

correction of multiple comparisons. Note however, that solely relying on an ROI-approach 

might prevent one from discovering other regions involved in the processes of interest. 

Therefore a combined whole-brain and ROI-approach is often a reasonable approach. 

 

3.2.3  Psychophysiological Interactions (PPI) 

Given that functional integration plays an important role in most cognitive processes, 

investigating the interaction of different brain regions during task performance is important to 

better understand the neural dynamics of cognitive processes. Different approaches to 

measure functional connectivity between brain regions have been proposed (Lee & Mechelli, 

2003). PPI analysis is such a functional connectivity method which also takes the specific task 

context into account. 

The aim of a PPI analysis is to explain neural responses in one brain region in terms of 

the interaction between the neural responses in another brain region and a specific 

psychological context (Friston et al., 1997). PPI analysis thus measures context-sensitive 

changes in functional connectivity between two regions. For example, PPI analysis can be 

used to investigate whether posterior brain region related to the perceptual processing of a 
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task are differentially coupled with lateral prefrontal regions under specific task conditions 

(Friston et al., 1997). This was done in Study 3 of this dissertation.  

In general, the PPI analysis consists of a design matrix with three regressors: (1) the 

“psychological variable” representing two task contexts to be compared, (2) the physiological 

variable representing the neural response in a given brain region (“seed region”) and (3) the 

interaction of term (1) and (2). The corresponding subject-specific contrast images of the 

interaction term are then entered into a random effects analysis. The whole-brain analysis 

identifies voxels that show increased functional coupling with the according seed region 

under task context 1 compared to task context 2. To test specific hypotheses about certain 

brain regions, this approach can be combined with the ROI approach described above. 

 

4 Summary of studies 1 – 3 
Based on the outlined state of the art in the research on the functional neuroanatomy of dual-

task processing, three basic questions concerning the functional role of the lPFC in 

interference processing in dual tasks remain open. These three questions concern:  

I.   the generality of the lPFC involvement in dual-task processing across stimulus- 

 response modality pairings and different types of dual-task coordination 

II.   the dissociability of different control processes involved in dual-task processing in 

 the lPFC 

III.   the interaction of the lPFC with posterior task-relevant brain regions to deal with 

 dual-task interference 

These three issues form the starting point for the three fMRI studies that are presented 

in detail as original articles below. Each study focuses on one of these issues but also has 

implications for the other questions outlined above. Next, a short overview will be given on 

the specific research questions of the three articles and the obtained results will be shortly 

summarised. 
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4.1  Study 1: “The neural effect of stimulus-response modality compatibility on 

dual-task performance: an fMRI study (Stelzel et al., 2006)” 

Research Question:  

Study 1 aimed at investigating the generality of the lPFC involvement in dual-task processing 

on two levels. First, generality with respect to lPFC involvement across different types of 

interference and second, generality with respect to the type of dual-task coordination 

associated with dual-task-related activity in the lPFC.   

As outlined above, some dual-task fMRI studies with the PRP paradigm tried to 

specify the type of dual-task interference related to lPFC activity. Whereas Jiang (2004) and 

Herath et al. (2001) found evidence for perceptual and motor interference, at the point of 

Study 1, no unambiguous evidence was present for central bottleneck interference in the 

lPFC. This is because all studies that compared dual-task-blocks with single-task-blocks used 

either overlapping perceptual or motor modalities in the component tasks. Therefore, the 

obtained dual-task-related activity changes in the lPFC might also be related to the resolution 

of perceptual or motor interference instead. Aim 1 of Study 1 was to exclude perceptual and 

motor interference and to investigate whether dual-task-related lPFC activity can also be 

found in situations with non-overlapping stimulus and response modalities.  For that purpose 

tasks with visual and auditory stimuli and manual and vocal responses were combined to 

compare the BOLD-signal changes between dual-task and single-task blocks. The finding of 

dual-task-related activity in such a task situation would then be attributable to the processing 

associated with the response selection bottleneck. 

Other dual-task studies (Szameitat et al., 2002; 2006) related the lPFC to the 

coordination of the temporal order of two tasks. Coordination, however, might also have other 

aspects. One important aspect is to coordinate the concurrent mapping of sensory information 

onto corresponding motor responses on an abstract level. When central task representations, 

like abstract verbal or spatial codes of two tasks, overlap, increased processing demands 
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might be related to the coordination of the concurrent processing of the two tasks. Additional 

coordinative demands might keep overlapping contents separated (Hazeltine et al., 2006).  

Aim 2 of Study 1 therefore was to investigate whether differences in lPFC activity can be 

found for two tasks with or without such central content overlap. For that purpose the 

stimulus-response modality compatibility between the two component tasks was manipulated. 

Importantly, modality incompatible tasks both required spatial coding and therefore are 

assumed involve the postulated processes of task coordination. In sum, modality compatibility 

offers the opportunity to manipulate the degree of central task overlap while keeping the 

applied stimuli and responses constant. Increased lPFC was expected for modality 

incompatible compared to modality compatible tasks. 

 

Results & Discussion: 

The comparison of dual-task and single-task blocks revealed dual-task-specific activity 

predominantly in lateral frontal and parietal regions. That is, even in dual-task situations 

without perceptual and motor overlap, lateral prefrontal regions surrounding the left inferior 

frontal sulcus showed increased dual-task-related activity. Thus, Study 1 supports the idea 

that the involvement of the lPFC in interference processing is rather general and that the lPFC 

is also related to the processing of central bottleneck interference. This complements previous 

findings by Herath et al. (2001) and Jiang (2004) and is also in accordance with later findings 

by Dux et al. (2006). 

 In addition, modality incompatible dual tasks that overlap with respect to central task 

representation revealed increased activity in the IFS compared with modality compatible task.  

The effects in the IFS were investigated in individual ROIs based on the dual-task 

minus single-task contrast. That way inter-individual variability in the exact location of dual-

task specific regions was taken into account. In addition, this effect was accompanied by 

strong behavioral effects of modality compatibility in the dual task conditions but not in the 
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single tasks. Importantly, modality compatible and incompatible dual tasks did not differ with 

respect to the timing of the two tasks as it was the case for the manipulation of task order in 

the studies by Szameitat et al. (2002; 2006). Hence, effects of dual-task coordination in the 

lPFC are not limited to situations of changing task order but can also be shown for 

coordination related to overlapping central contents. 

 

4.2  Study 2: “Dissociable neural effects of task order control and task set 

maintenance during dual-task processing (Stelzel et al., in press)” 

Research Question:  

The aim of Study 2 was to dissociate the neural effects of different control functions 

associated with dual-task performance: task order control and task set maintenance. As 

summarized above, there is evidence for a consistent involvement of the lPFC in dual-task 

performance. Usually, this was measured by comparing BOLD-signal changes in dual-task 

blocks with single-task blocks (Schubert & Szameitat, 2003; Szameitat et al., 2002). The 

results of this subtraction method, however, may reflect any difference between dual tasks 

and single tasks. Although Szameitat et al. (2002; 2006) showed that one such difference 

between dual tasks and single tasks – the demand to control the task order – is related to 

activity changes in the lPFC, other differences between dual tasks and single tasks are 

conceivable. Jiang et al. (2004) argued that simply the requirement to maintain two task sets 

simultaneously may be the crucial factor underlying dual-task-related activity in the lPFC. In 

Study 2, the contribution of task order control and task set maintenance to activity changes in 

the lPFC was investigated while participants performed dual tasks. For that purpose, a 

parametrical manipulation of task order control and task set maintenance was realized in an 

integrated experimental design performed by one group of participants. Specifically, task 

order control was measured in the comparison of dual-task blocks with random and fixed 

temporal order of the component tasks. Task set maintenance was manipulated via the number 
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of relevant stimulus-response mappings per component task. Note that such an integrated 

design has the advantage that the corresponding activity changes can be compared directly 

within the same group of participants. Inferences about the overlap in functional localization 

of different control functions in the lPFC therefore exclude differences between participants, 

between the applied paradigms or scanning and analysis procedures as they may be present in 

the comparison of activity peaks between studies. 

 

Results & Discussion: 

The fMRI data revealed a functional-neuroanatomical dissociation of both factors in the lPFC 

(see Figure 3). Regions surrounding the inferior frontal sulcus and the middle frontal gyrus 

were exclusively associated with task order control but not with increased demands on task 

set maintenance during dual-task processing. The only lPFC region associated with task set 

maintenance was located in the left anterior insula. Outside the lPFC, there were dissociable 

regions for task order control and task set maintenance bilaterally in the premotor cortices 

 

Figure 3: Resuts of Study 2. Whol-brain analysis fort he comparison of dual-task blocks with random order and 

fixed order (red) and blocks with set sizes of 8 vs. 4 S-R mappings (green) as well as the conjunction of both 

factors (blue). 
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with more rostral premotor activity for task order control and more caudal premotor activity 

for task set maintenance. These data clearly contradict the assumption that lPFC activity 

during dual-task processing is simply related to the requirement to maintain the task sets of 

two tasks simultaneously (Jiang et al., 2004). Instead, the results of Study 2 suggest 

that task order control is a separable cognitive mechanism in dual-task situations that is 

related to activity changes in the lPFC and that can be dissociated from task set maintenance.  

 

4.3 Study 3: “Neural mechanisms of attentional task setting in dual tasks  

(Stelzel et al., submitted for publication)” 

Research Question:  

While Studies 1 and 2 showed the involvement of the lPFC in the control of dual-task 

processing, they left open how exactly the lPFC controls the dual-task processing stream. 

Study 3 aimed at specifying the interaction of the lPFC with task-relevant sensory regions in 

order to better understand the neural dynamics involved in dual-task processing. The 

computational dual-task models described above suggest that control mechanisms like 

attentional task setting (Sigman & Dehaene, 2006) serve the coordination of two interfering 

tasks (see also Logan & Gordon, 2001; Meyer & Kieras, 1997). These models suggest that S1 

processing is not affected by a secondary task because – due to its temporal precedence or 

because of the task instructions – its processing is attentionally more focused. At the same 

time, the PRP effect in S2 processing emerges due to delayed focussing on S2. Importantly, 

the assumption of attentional task setting implies different temporal dynamics for S1 and S2 

processing with respect to the devoted attentional resources at different temporal overlaps. 

Due to the S1-related task setting mechanism, attentional focussing is assumed to be increased 

for S1 processing when there is temporal overlap with S2 compared to situations without such 

temporal overlap. Attentional focussing on S2, in contrast, should not depend on the temporal 

overlap.  
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Until now, the neural mechanism associated with these task setting mechanisms are 

not well understood. In Study 3, two plausible neural mechanisms that might reflect such 

attentional task setting with respect to S1 and S2 processing in a PRP situation were tested. 

First, task-relevant sensory regions were tested for a differential up-regulation in S1-relevant 

sensory regions in dual-task situations with high temporal overlap (see Egner & Hirsch, 2005; 

but also Desimone & Duncan, 1995). Second, changes in functional connectivity of S1-

relevant sensory regions with dual-task-related regions in the lPFC might represent a second 

neural mechanism reflecting attentional task setting in dual tasks. Functional coupling was 

assessed between lPFC regions related to dual-task control and task-relevant sensory regions 

in the Fusiform Face Area (FFA) for S1-processing and Visual Word Form Area (VWFA) for 

S2-processing. In particular, the functional coupling was measured for condition-specific 

contrasts between different SOAs in the PRP paradigm. To control for perceptual differences 

in the three SOA conditions (100, 300, 1000 ms), a control condition was included where the 

secondary stimulus was completely irrelevant for task performance (dual-task vs single-task 

blocks).  High interference at short SOA was expected to be associated with increased 

functional coupling of dual-task-related lPFC regions and S1-relevant regions in the FFA 

compared to low or non-overlapping tasks. At the same time, deficient coupling of lPFC with 

S2-relevant regions in the VWFA was expected to be related to the performance costs in this 

secondary task.  

 

Results & Discussion: 

As a first result of Study 3, we replicated the behavioral PRP effect. The activity in S1-

relevant regions in the FFA depended on the degree of temporal overlap of the two stimuli 

with signal increases at high and no temporal overlap. However, identical effects were found 

for DUAL TASKS and SINGLE TASKS, indicating that the SOA-effects did not solely 

reflect the PRP-effect or associated task setting mechanisms present in the DUAL-TASK 
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condition but rather perceptual effects of simultaneous stimulus presentation. S2-relevant 

activity in the VWFA was modulated by the task relevance of S2 with increased activity in 

situations where participants also responded to S2. This fits nicely to known top-down effects 

of sustained attention on activity in sensory regions (Desimone & Duncan, 1995).  

For the dual-task-related regions in the plPFC, we found effects of SOA and task 

relevance. However, there was no interaction of both factors. Agiain, this suggests that the 

activity differences between the SOAs in the plPFC are not related to the PRP effect and 

attentional task setting in dual tasks only. Instead, effects related to the processing of the more 

or less simultaneously presented second stimulus seem to be a more plausible account for the 

obtained SOA effects in the plPFC (see also Jiang et al., 2004).  

 Most importantly, in Study 3 significant differences in the functional coupling across 

SOAs were present between S1-relevant regions in the FFA and dual-task-related regions in 

the right lPFC. Functional coupling was strongest at SOA100 as expected from the theory of 

attentional task setting. In contrast, no SOA-related up-regulation of functional coupling with 

the lPFC was present for the VWFA.  

 In addition, the degree of functional coupling of the right plPFC and the FFA was 

negatively correlated with the error rates in dual tasks but not in single tasks. That is, 

participants with increased functional coupling of plPFC and FFA at short SOAs made 

generally less dual-task errors and were thus more efficient in dual-task processing.  

Taken together, the results of Study 3 support the idea that the presence of transient 

changes in functional coupling of control regions in the plPFC and S1-relevant regions 

together with the absence of such coupling for S2-relevant regions in situation of temporal 

overlap is associated with the PRP performance pattern. 
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5 General discussion and future directions 
In sum, the results of the three fMRI studies presented in this dissertation contribute 

essentially to the understanding of the functional role of the lateral prefrontal cortex in 

interference processing in dual tasks.  

 Study 1 showed the generality of dual-task-related activity in the lPFC. The finding of 

dual-task-specific involvement of the lPFC was extended to stimulus-response pairings with 

non-overlapping stimulus- and response modalities, thus unambiguously relating dual-task-

specific activity changes to the processing of central bottleneck interference. In addition, 

Study 1 revealed that not only the coordination of the temporal order in dual tasks is related to 

lPFC activity but also coordination with respect to overlapping central task representations. 

These findings show that the lPFC has a rather generic function for the processing of 

interference at different levels. Interference processing in single tasks is only one facet (Miller 

& Cohen, 2001). Perceptual (Jiang et al., 2004), motor (Herath et al., 2001) and, importantly, 

response selection interference in dual-task situations require the coordination and control of 

two relevant task streams according to internal priorities and goals. Study 1 has firstly shown 

unambiguously that the lPFC is involved in coordinating the processing of two decisional 

processes that that can not proceed in parallel. 

 In Study 2, the behavioral and neural dissociability of two control functions involved 

in dual-task processing in the lPFC was shown. Whereas the control of the task order in dual 

tasks was associated with lPFC activity, task set maintenance was mainly associated with 

lateral premotor activity. This result supports the idea that task order control is a separable 

control mechanism in the lPFC that deals with dual-task interference and that can be 

dissociated from simple task set maintenance. From a cognitive neuroscience perspective this 

result supports the conclusion that not all types of cognitive control mechanisms are located in 

overlapping regions within the lPFC (see also Hester, Murphy, and Garavan, 2004). Instead, it 

was shown that the specific localization of different cognitive control mechanisms can be 
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distinguished using appropriate experimental designs. In addition, this neural evidence for the 

involvement of  task order control in dual-task processing clearly contradicts cognitive 

models that assume passive bottleneck processing (Pashler, 1994). Instead, direct evidence is 

provided for active control mechanism involved in dual-task processing (Logan & Gordon, 

2001; Meyer & Kieras, 1997; Sigman & Dehaene, 2006). 

 The third study of this dissertation showed that the differential interaction of the lPFC 

with posterior task relevant regions (FFA, VWFA) is one crucial mechanism how the lPFC 

deals with dual-task interference.  Functional coupling of the lPFC with regions relevant for 

S1- processing was increased at high temporal overlap with a secondary task. This is in 

accordance with the assumption that active task setting mechanisms focus attention on task 1 

to prevent interference in this prioritized task. In contrast, task 2 performance costs might be 

related to the deficient functional coupling of regions relevant for S2 processing with the 

lPFC at high temporal overlap. This result greatly extends previous insights on the functional 

neuroanatomy of dual-task processing which was primarily investigated within the lPFC. 

Study 3 provides evidence that setting priorities between multiple relevant information 

streams takes place in interaction with those information streams. Study 3 showed that the 

integration of relevant sensory information with the internal information on priorities and 

goals is realised by functional coupling of sensory and prefrontal regions.  

 Taken together, the functional role of the lPFC in dual-task processing can be 

described within the framework of cognitive control: the lPFC coordinates multiple task-

relevant information streams in accordance with our internal goal hierarchies. The lPFC does 

so by biasing the processing in posterior brain regions in order to set task priorities and to 

switch between relevant task representations (Koechlin et al., 2003; Miller & Cohen, 2001).  

The finding that goal-oriented mechanisms of task order control can be separated from 

other dual-task related mechanism like task set maintenance also fits well to conceptions of a 

hierarchical organization of the frontal cortex (Fuster, 1989; 2001; Koechlin et al., 2003).  
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These models relate the premotor cortex to pure sensory-motor control and more rostral lPFC 

regions to the context-specific control and control related to specific episodes. Thus, the 

findings of the dissertation support existing models on cognitive control in the lPFC, 

providing extensive new empirical evidence for task situations with multiple relevant 

information streams. 

The focus of all three studies presented here lay on the functional role of the lPFC in 

dual-task processing. Not surprisingly, in all three studies additional regions were involved as 

indicated in the respective whole brain analyses. The potential role of these regions will be 

shortly discussed at this point. 

The medial prefrontal cortex was involved in the comparison of dual tasks and single 

tasks in Study 1 as well as in the SOA contrast in Study 3. The medial prefrontal cortex, 

including the pre-supplementary motor area (pre-SMA) and the anterior cingulate cortex 

(ACC), has been found to be involved in performance monitoring and the detection of errors 

and conflicting response tendencies (Botvinick et al., 2001; Ridderinkhof, Ullsperger, Crone, 

& Nieuwenhuis, 2004). Monitoring and detection of interference is another important aspect 

of cognitive control which is also present in the processing of dual-task interference, being 

necessary for the initiation of interference resolution. While the focus of the present studies 

was on control mechanism involved in the resolution of interference in the lPFC, the 

interactions of lPFC and medial PFC might also be of interest for future studies. This might 

also shed further light on the specific contributions of lPFC regions to the processing of 

different types of interference on the hand and to the resolution of this interferenceon the 

other hand. There may be dissociable regions in the lPFC related to the bottleneck itself 

(Study 1; Dux et al., 2006; Herath et al., 2001; Jiang, 2004) and regions related to the 

resolution of interference, e.g. the active control of bottleneck processing (Study 2 & 3, 

Szameitat et al., 2002; 2006), showing different interactions with the medial PFC. Note that 

effects of task order control in the present studies were always present in the plPFC but also 
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more anteriorly in middle portions of the IFS. It may be that these regions have different 

functional roles in interference processing in dual task. For example, the inferior frontal 

junction region in the plPFC was has been consistiently associated with the updating of task 

representations as one aspect of cognitive control (Brass, Derrfuss, Forstmann, & von 

Cramon, 2005). However, additional analyses of Study 3 showed that also in mid-IFS regions, 

the effect of comparable SOA-effects related to dual-task and single-task processing was 

present as indicated by the whole-brain analysis testing for interaction effects. Thus, activity 

patterns of these regions related to a prototypical interference manipulation in dual tasks 

(SOA) do not reveal different functional roles of mid- and posterior lPFC. Future analyses 

might specifically test the connectivity patterns with medial PFC to elucidate the specific 

contributions of these lPFC regions to interference processing in dual tasks. 

 Furthermore, in the parietal cortex, in particular regions along the intraparietal sulcus 

(IPS) were consistently activated in the comparison of dual tasks and single tasks (Study 1) as 

well as in the contrasts for task order control (Study 2) and SOA (Study 3). This finding 

converges with findings of other studies suggesting a role of the parietal cortex in the spatial 

coordination and control of motor sequences as it is also present in dual-task situations 

(Andersen, Essick, & Siegel, 1987; Schubert, von Cramon, Niendorf, Pollmann, & Bublak, 

1998; see Culham & Kanwisher, 2001 for a comprehensive review). Also, the IPS has been 

related to the actual implementation of attentional processes that are initiated by the lPFC 

(Corbetta & Shulman, 2002; Hopfinger et al. 2000). The specific contribution of the superior 

parietal cortex to efficient dual-task processing might be another topic for future studies. 

On a more abstract level, the aPFC has been associated with the weighting and 

integration of information in the pursuit of higher behavioral goals (Christoff & Garbieli, 

2000; Pollmann, 2001; Ramnani & Owen, 2004). A typical paradigm associated with the 

aPFC is the prospective memory paradigm where participants are required to perform a pre-

defined action upon the presentation of a delayed cue presented within a continuous task 
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performance (Burgess, Veitch, de Lacy Costello, & Shallice, 2000; Burgess, Scott, & Frith, 

2003). The prospective memory paradigm seems to be related to the dual-task paradigm with 

two tasks being performed more or less simultaneously. However, no consistent aPFC activity 

was found in the present studies which might be related to some fundamental differences 

between the prospective memory paradigm and the PRP paradigm. Most importantly, the 

information to be responded to in the PRP paradigm is always externally defined – that is 

perceivable stimuli that require a distinctive motor response in every task trial. Control 

mechanisms serve the coordination of this externally presented information. In contrast, 

carrying out an intended action upon the presentation of the prospective memory cue is more 

internally guided - it requires the consideration of multiple conditions for correct 

performance. Although there was no supra-threshold activity in the aPFC in the present 

studies, investigating the transition between the two types of goal-directed multi-tasking 

might be worth to be further investigated.  

Altogether, the present dissertation contributes essentially to the understanding of how 

dual-task processing is realized by the human brain. Based on the obtained conclusions on the 

functional role of the lPFC in dual-task processing, further network-oriented approaches 

might help to elucidate the interplay of the lPFC with medial and anterior PFC and the 

superior parietal cortex. Besides effective connectivity measures, the high temporal resolution 

of evoked activity and the neuronal oscillatory synchronization as measured in electro- and 

magnet encephalography may further extend the gained insights by specifying the temporal 

dynamics of cognitive control in dual-task processing (see for example Swainson et al., 2003). 
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