20 research outputs found

    Expression pattern analysis of transcribed HERV sequences is complicated by ex vivo recombination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human genome comprises numerous human endogenous retroviruses (HERVs) that formed millions of years ago in ancestral species. A number of loci of the HERV-K(HML-2) family are evolutionarily much younger. A recent study suggested an infectious HERV-K(HML-2) variant in humans and other primates. Isolating such a variant from human individuals would be a significant finding for human biology.</p> <p>Results</p> <p>When investigating expression patterns of specific HML-2 proviruses we encountered HERV-K(HML-2) cDNA sequences without proviral homologues in the human genome, named HERV-KX, that could very well support recently suggested infectious HML-2 variants. However, detailed sequence analysis, using the software RECCO, suggested that HERV-KX sequences were produced by recombination, possibly arising <it>ex vivo</it>, between transcripts from different HML-2 proviral loci.</p> <p>Conclusion</p> <p>As RT-PCR probably will be instrumental for isolating an infectious HERV-K(HML-2) variant, generation of "new" HERV-K(HML-2) sequences by <it>ex vivo </it>recombination seems inevitable. Further complicated by an unknown amount of allelic sequence variation in HERV-K(HML-2) proviruses, newly identified HERV-K(HML-2) variants should be interpreted very cautiously.</p

    Expression patterns of transcribed human endogenous retrovirus HERV-K(HML-2) loci in human tissues and the need for a HERV Transcriptome Project

    Get PDF
    Background: A significant proportion of the human genome is comprised of human endogenous retroviruses (HERVs). HERV transcripts are found in every human tissue. Expression of proviruses of the HERV-K(HML-2) family has been associated with development of human tumors, in particular germ cell tumors (GCT). Very little is known about transcriptional activity of individual HML-2 loci in human tissues, though. Results: By employing private nucleotide differences between loci, we assigned ~1500 HML-2 cDNAs to individual HML-2 loci, identifying, in total, 23 transcriptionally active HML-2 proviruses. Several loci are active in various human tissue types. Transcription levels of some HML-2 loci appear higher than those of other loci. Several HML-2 Rec-encoding loci are expressed in GCT and non-GCT tissues. A provirus on chromosome 22q11.21 appears strongly upregulated in pathologic GCT tissues and may explain high HML-2 Gag protein levels in GCTs. Presence of Gag and Env antibodies in GCT patients is not correlated with activation of individual loci. HML-2 proviruses previously reported capable of forming an infectious HML-2 variant are transcriptionally active in germ cell tissue. Our study furthermore shows that Expressed Sequence Tag (EST) data are insufficient to describe transcriptional activity of HML-2 and other HERV loci in tissues of interest. Conclusion: Our, to date, largest-scale study reveals in greater detail expression patterns of individual HML-2 loci in human tissues of clinical interest. Moreover, large-scale, specialized studies are indicated to better comprehend transcriptional activity and regulation of HERVs. We thus emphasize the need for a specialized HERV Transcriptome Project

    Do genetic factors protect for early onset lung cancer? A case control study before the age of 50 years

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early onset lung cancer shows some familial aggregation, pointing to a genetic predisposition. This study was set up to investigate the role of candidate genes in the susceptibility to lung cancer patients younger than 51 years at diagnosis.</p> <p>Methods</p> <p>246 patients with a primary, histologically or cytologically confirmed neoplasm, recruited from 2000 to 2003 in major lung clinics across Germany, were matched to 223 unrelated healthy controls. 11 single nucleotide polymorphisms of genes with reported associations to lung cancer have been genotyped.</p> <p>Results</p> <p>Genetic associations or gene-smoking interactions was found for <it>GPX1(Pro200Leu) </it>and <it>EPHX1(His113Tyr)</it>. Carriers of the Leu-allele of <it>GPX1(Pro200Leu) </it>showed a significant risk reduction of OR = 0.6 (95% CI: 0.4–0.8, p = 0.002) in general and of OR = 0.3 (95% CI:0.1–0.8, p = 0.012) within heavy smokers. We could also find a risk decreasing genetic effect for His-carriers of <it>EPHX1(His113Tyr) </it>for moderate smokers (OR = 0.2, 95% CI:0.1–0.7, p = 0.012). Considered both variants together, a monotone decrease of the OR was found for smokers (OR of 0.20; 95% CI: 0.07–0.60) for each protective allele.</p> <p>Conclusion</p> <p>Smoking is the most important risk factor for young lung cancer patients. However, this study provides some support for the T-Allel of <it>GPX1(Pro200Leu) </it>and the C-Allele of <it>EPHX1(His113Tyr) </it>to play a protective role in early onset lung cancer susceptibility.</p

    BMC Genomics Expression patterns of transcribed human endogenous retrovirus HERV-K(HML-2) loci in human tissues and the need for a HERV Transcriptome Project

    No full text
    Abstract Background: A significant proportion of the human genome is comprised of human endogenous retroviruses (HERVs). HERV transcripts are found in every human tissue. Expression of proviruses of the HERV-K(HML-2) family has been associated with development of human tumors, in particular germ cell tumors (GCT). Very little is known about transcriptional activity of individual HML-2 loci in human tissues, though

    Expression pattern analysis of transcribed HERV sequences is complicated by recombination-3

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Expression pattern analysis of transcribed HERV sequences is complicated by recombination"</p><p>http://www.retrovirology.com/content/4/1/39</p><p>Retrovirology 2007;4():39-39.</p><p>Published online 6 Jun 2007</p><p>PMCID:PMC1904241.</p><p></p> genome. The majority of cDNAs displayed between zero and a few differences to the best match, and were thus assignable to specific HML-2 loci. A minority of cDNAs displayed a greater number of dissimilarities to the best match and were thus not assignable with confidence to specific HML-2 loci. HERV-KX sequences were defined as displaying 18 or more nucleotide differences to the best matching HML-2 locus. (B) Sequence divergence of HERV-KX sequences in comparison to selected HML-2 reference sequences from the human genome, depicted as a neighbour joining-tree of the absolute number of nucleotide differences between sequences. For the sake of clarity, phylogenetically more distant HML-2 reference sequences were not included in the tree, as they were less similar to HERV-KX sequences than the reference sequences included in the tree. Proviral reference sequences are given as "xx_xxx" (see text). Positions with gaps were excluded in pairwise sequence comparisons
    corecore