39 research outputs found

    A cytological approach to study meiotic recombination and chromosome dynamics of Arabidopsis thaliana male meiocytes in three dimensions

    Get PDF
    During meiotic prophase I chromosomes undergo dramatic conformational changes that accompany chromosome condensation, pairing and recombination between homologs. These changes include the anchoring of telomeres to the nuclear envelope and their clustering to form a bouquet. In plants, these events have been studied and illustrated in intact meiocytes of large genome species. Arabidopsis thaliana is an excellent genetic model where major molecular pathways that control synapsis and recombination between homologs have been uncovered. Yet the study of chromosome dynamics is hampered by current cytological methods that disrupt the 3D architecture of the nucleus. Here we set up a protocol to preserve the 3D configuration of A. thaliana meiocytes. We showed that this technique is compatible with the use of a variety of antibodies that label structural and recombination proteins and were able to highlight the presence of clustered synapsis initiation centers at the nuclear periphery. By using fluorescence in situ hybridization (FISH) we also studied chromosome behavior during premeiotic G2 and prophase I, revealing the existence of a telomere bouquet during A. thaliana male meiosis. In addition we showed that the number of telomeres in a bouquet and its volume vary greatly thus revealing the complexity of telomere behavior during meiotic prophase I. Finally, by using probes that label subtelomeric regions of individual chromosomes we revealed differential localization behaviors of chromosome ends. Our protocol opens new areas of research to investigate chromosome dynamics in A. thaliana meiocytesPeer reviewe

    Sex-Specific Crossover Distributions and Variations in Interference Level along Arabidopsis thaliana Chromosome 4

    Get PDF
    In many species, sex-related differences in crossover (CO) rates have been described at chromosomal and regional levels. In this study, we determined the CO distribution along the entire Arabidopsis thaliana Chromosome 4 (18 Mb) in male and female meiosis, using high density genetic maps built on large backcross populations (44 markers, >1,300 plants). We observed dramatic differences between male and female map lengths that were calculated as 88 cM and 52 cM, respectively. This difference is remarkably parallel to that between the total synaptonemal complex lengths measured in male and female meiocytes by immunolabeling of ZYP1 (a component of the synaptonemal complex). Moreover, CO landscapes were clearly different: in particular, at both ends of the map, male CO rates were higher (up to 4-fold the mean value), whereas female CO rates were equal or even below the chromosomal average. This unique material gave us the opportunity to perform a detailed analysis of CO interference on Chromosome 4 in male and female meiosis. The number of COs per chromosome and the distances between them clearly departs from randomness. Strikingly, the interference level (measured by coincidence) varied significantly along the chromosome in male meiosis and was correlated to the physical distance between COs. The significance of this finding on the relevance of current CO interference models is discussed

    Escherichia coli RuvBL268S: A mutant RuvB protein that exhibits wild-type activities in vitro but confers a UV-sensitive ruv phenotype in vivo

    Get PDF
    The RuvABC proteins of Escherichia coli process recombination intermediates during genetic recombination and DNA repair. RuvA and RuvB promote branch migration of Holliday junctions, a process that extends heteroduplex DNA. Together with RuvC, they form a RuvABC complex capable of Holliday junction resolution. Branch migration by RuvAB is mediated by RuvB, a hexameric ring protein that acts as an ATP-driven molecular pump. To gain insight into the mechanism of branch migration, random mutations were introduced into the ruvB gene by PCR and a collection of mutant alleles were obtained. Mutation of leucine 268 to serine resulted in a severe UV-sensitive phenotype, characteristic of a ruv defect. Here, we report a biochemical analysis of the mutant protein RuvBL268S. Unexpectedly, the purified protein is fully active in vitro with regard to its ATPase, DNA binding and DNA unwinding activities. It also promotes efficient branch migration in combination with RuvA, and forms functional RuvABC-Holliday junction resolvase complexes. These results indicate that RuvB may perform some additional, and as yet undefined, function that is necessary for cell survival after UV-irradiatio

    Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Get PDF
    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.Research in the Henderson laboratory was supported by a Royal Society University Research Fellowship, Gatsby Charitable Foundation grant 2962, BBSRC grant BB/N007557/1 and National Natural Science Foundation of China grant 61403318. KC was funded by an EMBO long term postdoctoral fellowship ALTF 807-2009. PAZ was supported by a Polish Mobility Plus Fellowship 605/MOB/2011/0. GPC is funded by a National Science Foundation Grant (MCB-1121563). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version of the article. It first appeared from PLOS at http://dx.doi.org/10.1371/journal.pgen.1006179

    Genome-Wide Crossover Distribution in Arabidopsis thaliana Meiosis Reveals Sex-Specific Patterns along Chromosomes

    Get PDF
    In most species, crossovers (COs) are essential for the accurate segregation of homologous chromosomes at the first meiotic division. Their number and location are tightly regulated. Here, we report a detailed, genome-wide characterization of the rate and localization of COs in Arabidopsis thaliana, in male and female meiosis. We observed dramatic differences between male and female meiosis which included: (i) genetic map length; 575 cM versus 332 cM respectively; (ii) CO distribution patterns: male CO rates were very high at both ends of each chromosome, whereas female CO rates were very low; (iii) correlations between CO rates and various chromosome features: female CO rates correlated strongly and negatively with GC content and gene density but positively with transposable elements (TEs) density, whereas male CO rates correlated positively with the CpG ratio. However, except for CpG, the correlations could be explained by the unequal repartition of these sequences along the Arabidopsis chromosome. For both male and female meiosis, the number of COs per chromosome correlates with chromosome size expressed either in base pairs or as synaptonemal complex length. Finally, we show that interference modulates the CO distribution both in male and female meiosis

    Meiosis : recombination and the control of cell division

    No full text
    Meiosis is a key step in sexual reproduction.. It is required for the production of gametes, consequently fertility, and generates diversity by scrambling parental genotypes. Thus, it is central to plant genome evolution The last ten years have provided a huge step forward in our understanding of chromosome recombination and segregation in plants, with more than 50 genes identified and the deciphering of molecular mechanisms Here we review all these findings on plant meiotic recombination and chromosome dynamics, including both diploid and polyploid species. We discuss their similarities and differences compared to other model species. It appears that there is now an integrated framework to better evaluate how meiosis and recombination have driven plant genome evolution and how genome structure reciprocally impacts meiotic processes

    The road to crossovers: plants have their say

    No full text
    Crossovers involve the reciprocal exchange of large fragments of genetic material between homologous chromosomes during meiosis. In this way, crossovers are the basis of genetics. Remarkably, the number and distribution of crossovers on chromosomes are closely controlled. Data from various model organisms (notably Saccharomyces cerevisiae) show that the distribution of crossovers results from a series of tightly regulated events involving the formation and repair of double-strand breaks and interference. Recent advances in genetic and cytological tools, particularly for studying Arabidopsis thaliana, have enabled crossover control in plants to be studied in more detail. In this article, we discuss the contribution of plant studies to meiosis research, particularly to our understanding of crossover control and interference, and we evaluate models of interference

    Mécanismes et contrôles de la recombinaison méiotique chez la levure Saccharomyces cerevisiae

    No full text
    Les mécanismes moléculaires de la recombinaison méiotique commencent à être mieux compris grâce à une série de travaux récents chez Saccharomyces cerevisiae. Il a été montré que la recombinaison méiotique est initiée par la formation de cassures double-brin de l’ADN qui peuvent être mises en évidence physiquement dans les premières heures de la méiose. Ces cassures double-brin sont localisées préférentiellement dans les régions intergéniques contenant un promoteur de transcription et sont regroupées dans des domaines le long des chromosomes. La protéine Spo11 qui est apparentée à une nouvelle famille de topoisomérases de type II, est très probablement la protéine responsable de la formation de ces cassures doublebrin. Plusieurs intermédiaires du processus de réparation des cassures double-brin ont été détectées physiquement chez la levure et des complexes multiprotéiques qui interviennent à différentes étapes au cours de la réparation ont été identifiés. Ces complexes multiprotéiques sont retrouvés chez les eucaryotes supérieurs, ce qui suggère une conservation des mécanismes de recombinaison méiotique. L’utilisation combinée de la génétique, de la cytologie, de la biochimie et des nouvelles technologies développées pour les études génomiques (puces à ADN) devrait aboutir à une meilleure compréhension des mécanismes de la recombinaison méiotique

    Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination "hot spots"

    No full text
    Crossover (CO) is a key process for the accurate segregation of homologous chromosomes during the first meiotic division. In most eukaryotes, meiotic recombination is not homogeneous along the chromosomes, suggesting a tight control of the location of recombination events. We genotyped 71 single nucleotide polymorphisms (SNPs) covering the entire chromosome 4 of Arabidopsis thaliana on 702 F2 plants, representing 1404 meioses and allowing the detection of 1171 COs, to study CO localization in a higher plant. The genetic recombination rates varied along the chromosome from 0 cM/Mb near the centromere to 20 cM/Mb on the short arm next to the NOR region, with a chromosome average of 4.6 cM/Mb. Principal component analysis showed that CO rates negatively correlate with the G+C content (P =3x10(-4)), in contrast to that reported in other eukaryotes. COs also significantly correlate with the density of single repeats and the CpG ratio, but not with genes, pseudogenes, transposable elements, or dispersed repeats. Chromosome 4 has, on average, 1.6 COs per meiosis, and these COs are subjected to interference. A detailed analysis of several regions having high CO rates revealed "hot spots" of meiotic recombination contained in small fragments of a few kilobases. Both the intensity and the density of these hot spots explain the variation of CO rates along the chromosome
    corecore