3,741 research outputs found

    Human diseases of telomerase dysfunction: insights into tissue aging

    Get PDF
    There are at least three human diseases that are associated with germ-line mutations of the genes encoding the two essential components of telomerase, TERT and TERC. Heterozygous mutations of these genes have been described for patients with dyskeratosis congenita, bone marrow failure and idiopathic pulmonary fibrosis. In this review, we will detail the clinical similarities and difference of these diseases and review the molecular phenotypes observed. The spectrum of mutations in TERT and TERC varies for these diseases and may in part explain the clinical differences observed. Environmental insults and genetic modifiers that accelerate telomere shortening and increase cell turnover may exaggerate the effects of telomerase haploinsufficiency, contributing to the variability of age of onset as well as tissue-specific organ pathology. A central still unanswered question is whether telomerase dysfunction and short telomeres are a much more prominent factor than previously suspected in other adult-onset, age-related diseases. Understanding the biological effects of these mutations may ultimately lead to novel treatments for these patients

    The inhibition of monocarboxylate transporter 2 (MCT2) by AR-C155858 is modulated by the associated ancillary protein

    Get PDF
    In mammalian cells, MCTs (monocarboxylate transporters) require association with an ancillary protein to enable plasma membrane expression of the active transporter. Basigin is the preferred binding partner for MCT1, MCT3 and MCT4, and embigin for MCT2. In rat and rabbit erythrocytes, MCT1 is associated with embigin and basigin respectively, but its sensitivity to inhibition by AR-C155858 was found to be identical. Using RT (reverse transcription)–PCR, we have shown that Xenopus laevis oocytes contain endogenous basigin, but not embigin. Co-expression of exogenous embigin was without effect on either the expression of MCT1 or its inhibition by AR-C155858. In contrast, expression of active MCT2 at the plasma membrane of oocytes was significantly enhanced by co-expression of exogenous embigin. This additional transport activity was insensitive to inhibition by AR-C155858 unlike that by MCT2 expressed with endogenous basigin that was potently inhibited by AR-C155858. Chimaeras and C-terminal truncations of MCT1 and MCT2 were also expressed in oocytes in the presence and absence of exogenous embigin. L-Lactate Km values for these constructs were determined and revealed that the TM (transmembrane) domains of an MCT, most probably TM7–TM12, but not the C-terminus, are the major determinants of L-lactate affinity, whereas the associated ancillary protein has little or no effect. Inhibitor titrations of lactate transport by these constructs indicated that embigin modulates MCT2 sensitivity to AR-C155858 through interactions with both the intracellular C-terminus and TMs 3 and 6 of MCT2. The C-terminus of MCT2 was found to be essential for its expression with endogenous basigin

    The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity

    Get PDF
    Monocarboxylate transporters MCT1-MCT4 require basigin (CD147) or embigin (gp70), ancillary proteins with a glutamate residue in their single transmembrane (TM) domain, for plasma membrane (PM) expression and activity. Here we use site-directed mutagenesis and expression in COS cells or Xenopus oocytes to investigate whether this glutamate (Glu218 in basigin) may charge-pair with a positively charged TM-residue of MCT1. Such residues were predicted using a new molecular model of MCT1 based upon the published structure of the E. coli glycerol-3-phosphate transporter. No evidence was obtained for Arg306 (TM 8) of MCT1 and Glu218 of basigin forming a charge-pair; indeed E218Q-basigin could replace WT-basigin, although E218R-basigin was inactive. No PM expression of R306E-MCT1 or D302R-MCT1 was observed but D302R/R306D-MCT1 reached the PM, as did R306K-MCT1. However, both were catalytically inactive suggesting that Arg306 and Asp302 form a charge-pair in either orientation, but their precise geometry is essential for catalytic activity. Mutation of Arg86 to Glu or Gln within TM3 of MCT1 had no effect on plasma membrane expression or activity of MCT1. However, unlike WT-MCT1, these mutants enabled expression of E218R-basigin at the plasma membrane of COS cells. We propose that TM3 of MCT1 lies alongside the TM of basigin with Arg86 adjacent to Glu218 of basigin. Only when both these residues are positively charged (E218R-basigin with WT-MCT1) is this interaction prevented; all other residue pairings at these positions may be accommodated by charge-pairing or stabilization of unionized residues through hydrogen bonding or local distortion of the helical structure

    Menstruation: science and society

    Get PDF
    © 2020 The Authors Women's health concerns are generally underrepresented in basic and translational research, but reproductive health in particular has been hampered by a lack of understanding of basic uterine and menstrual physiology. Menstrual health is an integral part of overall health because between menarche and menopause, most women menstruate. Yet for tens of millions of women around the world, menstruation regularly and often catastrophically disrupts their physical, mental, and social well-being. Enhancing our understanding of the underlying phenomena involved in menstruation, abnormal uterine bleeding, and other menstruation-related disorders will move us closer to the goal of personalized care. Furthermore, a deeper mechanistic understanding of menstruation—a fast, scarless healing process in healthy individuals—will likely yield insights into a myriad of other diseases involving regulation of vascular function locally and systemically. We also recognize that many women now delay pregnancy and that there is an increasing desire for fertility and uterine preservation. In September 2018, the Gynecologic Health and Disease Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development convened a 2-day meeting, “Menstruation: Science and Society” with an aim to “identify gaps and opportunities in menstruation science and to raise awareness of the need for more research in this field.” Experts in fields ranging from the evolutionary role of menstruation to basic endometrial biology (including omic analysis of the endometrium, stem cells and tissue engineering of the endometrium, endometrial microbiome, and abnormal uterine bleeding and fibroids) and translational medicine (imaging and sampling modalities, patient-focused analysis of menstrual disorders including abnormal uterine bleeding, smart technologies or applications and mobile health platforms) to societal challenges in health literacy and dissemination frameworks across different economic and cultural landscapes shared current state-of-the-art and future vision, incorporating the patient voice at the launch of the meeting. Here, we provide an enhanced meeting report with extensive up-to-date (as of submission) context, capturing the spectrum from how the basic processes of menstruation commence in response to progesterone withdrawal, through the role of tissue-resident and circulating stem and progenitor cells in monthly regeneration—and current gaps in knowledge on how dysregulation leads to abnormal uterine bleeding and other menstruation-related disorders such as adenomyosis, endometriosis, and fibroids—to the clinical challenges in diagnostics, treatment, and patient and societal education. We conclude with an overview of how the global agenda concerning menstruation, and specifically menstrual health and hygiene, are gaining momentum, ranging from increasing investment in addressing menstruation-related barriers facing girls in schools in low- to middle-income countries to the more recent “menstrual equity” and “period poverty” movements spreading across high-income countries

    DNA topoisomerases participate in fragility of the oncogene RET

    Get PDF
    Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication
    corecore