3,758 research outputs found

    Long-term in vitro 3D hydrogel co-culture model of inflammatory bowel disease

    Get PDF
    The in vitro study of the pathogenesis of inflammatory bowel disease (IBD) requires a cell model which closely reflects the characteristics of the in vivo intestinal epithelium. This study aimed to investigate the application of L-pNIPAM hydrogel as a scaffold to develop a long-term 3D co-culture model of Caco-2 and HT29-MTX cells under conditions analogous to inflammation, to determine its potential use in studying IBD. Monocultures and co-cultures were layered on L-pNIPAM hydrogel scaffolds and maintained under dynamic culture conditions for up to 12 weeks. Treatments with IL-1ÎČ, TNFα, and hypoxia for 1 week were used to create an inflammatory environment. Following prolonged culture, the metabolic activity of Caco-2 monoculture and 90% Caco-2/10% HT29-MTX co-cultures on L-pNIPAM hydrogels were increased, and finger-like structures, similar in appearance to villi were observed. Following treatment with IL-1ÎČ, TNFα and hypoxia, ALP and ZO-1 were decreased, MUC2 increased, and MUC5AC remained unchanged. ADAMTS1 was increased in response to hypoxia. Caspase 3 expression was increased in response to TNFα and hypoxic conditions. In conclusion, L-pNIPAM hydrogel supported long-term co-culture within a 3D model. Furthermore, stimulation with factors seen during inflammation recapitulated features seen during IBD

    Physical disruption of intervertebral disc promotes cell clustering and a degenerative phenotype

    Get PDF
    © 2019, The Author(s). To test the hypothesis that physical disruption of an intervertebral disc disturbs cell-matrix binding, leading to cell clustering and increased expression of matrix degrading enzymes that contribute towards degenerative disc cell phenotype. Lumbar disc tissue was removed at surgery from 21 patients with disc herniation, 11 with disc degeneration, and 8 with adolescent scoliosis. 5 ÎŒm sections were examined with histology, and 30-”m sections by confocal microscopy. Antibodies were used against integrin α5beta1, matrix metalloproteinases (MMP) 1, MMP-3, caspase 3, and denatured collagen types I and II. Spatial associations were sought between cell clustering and various degenerative features. An additional, 11 non-herniated human discs were used to examine causality: half of each specimen was cultured in a manner that allowed free ‘unconstrained’ swelling (similar to a herniated disc in vivo), while the other half was cultured within a perspex ring that allowed ‘constrained’ swelling. Changes were monitored over 36 h using live-cell imaging. 1,9-Di-methyl methylene blue (DMMB) assay for glycosaminoglycan loss was carried out from tissue medium. Partially constrained specimens showed little swelling or cell movement in vitro. In contrast, unconstrained swelling significantly increased matrix distortion, glycosaminoglycan loss, exposure of integrin binding sites, expression of MMPs 1 and 3, and collagen denaturation. In the association studies, herniated disc specimens showed changes that resembled unconstrained swelling in vitro. In addition, they exhibited increased cell clustering, apoptosis, MMP expression, and collagen denaturation compared to ‘control’ discs. Results support our hypothesis. Further confirmation will require longitudinal animal experiments

    1082 Free-breathing single-shot DENSE myocardial strain imaging using deformable registration

    Get PDF
    Free-breathing scans are often desirable in patients who find breath-holding difficult. We present a new approach for free-breathing myocardial strain imaging with displacement-encoding (DENSE) [1]. It acquires images with a single-shot sequence and removes respiratory motion using deformable registration

    Investigation of intervertebral disc degeneration using multivariate FTIR spectroscopic imaging

    Get PDF
    Traditionally tissue samples are analysed using protein or enzyme specific stains on serial sections to build up a picture of the distribution of components contained within them. In this study we investigated the potential of multivariate curve resolution-alternating least squares (MCR-ALS) to deconvolute 2nd derivative spectra of Fourier transform infrared (FTIR) microscopic images measured in transflectance mode of goat and human paraffin embedded intervertebral disc (IVD) tissue sections, to see if this methodology can provide analogous information to that provided by immunohistochemical stains and bioassays but from a single section. MCR-ALS analysis of non-degenerate and enzymatically in vivo degenerated goat IVDs reveals five matrix components displaying distribution maps matching histological stains for collagen, elastin and proteoglycan (PG), as well as immunohistochemical stains for collagen type I and II. Interestingly, two components exhibiting characteristic spectral and distribution profiles of proteoglycans were found, and relative component/tissue maps of these components (labelled PG1 and PG2) showed distinct distributions in non-degenerate versus mildly degenerate goat samples. MCR-ALS analysis of human IVD sections resulted in comparable spectral profiles to those observed in the goat samples, highlighting the inter species transferability of the presented methodology. Multivariate FTIR image analysis of a set of 43 goat IVD sections allowed the extraction of semi-quantitative information from component/tissue gradients taken across the IVD width of collagen type I, collagen type II, PG1 and PG2. Regional component/tissue parameters were calculated and significant correlations were found between histological grades of degeneration and PG parameters (PG1: p = 0.0003, PG2: p < 0.0001); glycosaminoglycan (GAG) content and PGs (PG1: p = 0.0055, PG2: p = 0.0001); and MRI T2* measurements and PGs (PG1: p = 0.0021, PG2: p < 0.0001). Additionally, component/tissue parameters for collagen type I and II showed significant correlations with total collagen content (p = 0.0204, p = 0.0127). In conclusion, the presented findings illustrate, that the described multivariate FTIR imaging approach affords the necessary chemical specificity to be considered an important tool in the study of IVD degeneration in goat and human IVDs

    Thermotropic Behavior of Coconut Oil During Wheat Dough Mixing: Evidence for a Solid-Liquid Phase Separation According to Mixing Temperature

    Get PDF
    Freeze fracture electron microscopy and differential scanning calorimetry were used to study the behavior of coconut oil during cake batter processing. The greatest modifications of fat crystallization are due to the mixing temperature of batter more than the physical state of the fat before is incorporation and the wheat flour hydration. mixing at a temperature below the melting point of coconut oil involves a liquid/solid fat segregation in the cake batter. The endogenous wheat flour lipids and proteins appear to stabilize this fat partition. These results are likely related to previous observations which correlate loaf volume and mixing temperature of wheat flour dough containing coconut oil

    Conserved metabolic enzymes as vaccine antigens for giardiasis

    Get PDF
    Giardia lamblia is a leading protozoal cause of diarrheal disease worldwide. Infection is associated with abdominal pain, malabsorption and weight loss, and protracted post-infectious syndromes. A human vaccine is not available against G. lamblia. Prior studies with human and murine immune sera have identified several parasite antigens, including surface proteins and metabolic enzymes with intracellular functions. While surface proteins have demonstrated vaccine potential, they can exhibit significant variation between G. lamblia strains. By comparison, metabolic enzymes show greater conservation but their vaccine potential has not been established. To determine whether such proteins can serve as vaccine candidates, we focused on two enzymes, α-enolase (ENO) and ornithine carbamoyl transferase (OCT), which are involved in glycolysis and arginine metabolism, respectively. We show in a cohort of patients with confirmed giardiasis that both enzymes are immunogenic. Intranasal immunization with either enzyme antigen in mice induced strong systemic IgG1 and IgG2b responses and modest mucosal IgA responses, and a marked 100- to 1,000-fold reduction in peak trophozoite load upon oral G. lamblia challenge. ENO immunization also reduced the extent and duration of cyst excretion. Examination of 44 cytokines showed only minimal intestinal changes in immunized mice, although a modest increase of CCL22 was observed in ENO-immunized mice. Spectral flow cytometry revealed increased numbers and activation state of CD4 T cells in the small intestine and an increase in α4ÎČ7-expressing CD4 T cells in mesenteric lymph nodes of ENO-immunized mice. Consistent with a key role of CD4 T cells, immunization of CD4-deficient and Rag-2 deficient mice failed to induce protection, whereas mice lacking IgA were fully protected by immunization, indicating that immunity was CD4 T cell-dependent but IgA-independent. These results demonstrate that conserved metabolic enzymes can be effective vaccine antigens for protection against G. lamblia infection, thereby expanding the repertoire of candidate antigens beyond primary surface proteins.publishedVersio

    A Multiply Imaged Luminous Infrared Galaxy Behind the Bullet Cluster

    Full text link
    We present evidence for a Spitzer-selected luminous infrared galaxy (LIRG) behind the Bullet Cluster. The galaxy, originally identified in IRAC photometry as a multiply imaged source, has a spectral energy distribution consistent with a highly extincted (A_V~3.3), strongly star-forming galaxy at z=2.7. Using our strong gravitational lensing model presented in Bradac et al. (2006), we find that the magnifications are 10 to 50 for the three images of the galaxy. The implied infrared luminosity is consistent with the galaxy being a LIRG, with a stellar mass of M_*~2e11 M_Sun and a star formation rate of ~90 M_Sun/yr. With lensed fluxes at 24 microns of 0.58 mJy and 0.39 mJy in the two brightest images, this galaxy presents a unique opportunity for detailed study of an obscured starburst with star fomation rate comparable to that of L* galaxies at z>2.Comment: 9 pages, 5 figures, ApJ, accepted. This version includes information on a third lensed image of the galax

    Non-Hodgkin Lymphoma in Children and Adolescents: Progress Through Effective Collaboration, Current Knowledge, and Challenges Ahead

    Get PDF
    Non-Hodgkin lymphoma is the fourth most common malignancy in children, has an even higher incidence in adolescents, and is primarily represented by only a few histologic subtypes. Dramatic progress has been achieved, with survival rates exceeding 80%, in large part because of a better understanding of the biology of the different subtypes and national and international collaborations. Most patients with Burkitt lymphoma and diffuse large B-cell lymphoma are cured with short intensive pulse chemotherapy containing cyclophosphamide, cytarabine, and high-dose methotrexate. The benefit of the addition of rituximab has not been established except in the case of primary mediastinal B-cell lymphoma. Lymphoblastic lymphoma is treated with intensive, semi-continuous, longer leukemia-derived protocols. Relapses in B-cell and lymphoblastic lymphomas are rare and infrequently curable, even with intensive approaches. Event-free survival rates of approximately 75% have been achieved in anaplastic large-cell lymphomas with various regimens that generally include a short intensive B-like regimen. Immunity seems to play an important role in prognosis and needs further exploration to determine its therapeutic application. ALK inhibitor therapeutic approaches are currently under investigation. For all pediatric lymphomas, the intensity of induction/consolidation therapy correlates with acute toxicities, but because of low cumulative doses of anthracyclines and alkylating agents, minimal or no long-term toxicity is expected. Challenges that remain include defining the value of prognostic factors, such as early response on positron emission tomography/computed tomography and minimal disseminated and residual disease, using new biologic technologies to improve risk stratification, and developing innovative therapies, both in the first-line setting and for relapse
    • 

    corecore