53 research outputs found

    Cavity Quantum Electrodynamics with a Rydberg blocked atomic ensemble

    Full text link
    We propose to implement the Jaynes-Cummings model by coupling a few-micrometer large atomic ensemble to a quantized cavity mode and classical laser fields. A two-photon transition resonantly couples the single-atom ground state |g> to a Rydberg state |e> via a non-resonant intermediate state |i>, but due to the interaction between Rydberg atoms only a single atom can be resonantly excited in the ensemble. This restricts the state space of the ensemble to the collective ground state |G> and the collectively excited state |E> with a single Rydberg excitation distributed evenly on all atoms. The collectively enhanced coupling of all atoms to the cavity field with coherent coupling strengths which are much larger than the decay rates in the system leads to the strong coupling regime of the resulting effective Jaynes-Cummings model. We use numerical simulations to show that the cavity transmission can be used to reveal detailed properties of the Jaynes-Cummings ladder of excited states, and that the atomic nonlinearity gives rise to highly non-trivial photon emission from the cavity. Finally, we suggest that the absence of interactions between remote Rydberg atoms may, due to a combinatorial effect, induce a cavity-assisted excitation blockade whose range is larger than the typical Rydberg dipole-dipole interaction length.Comment: 9 pages, 6 figure

    Gene-Based Analysis of Regionally Enriched Cortical Genes in GWAS Data Sets of Cognitive Traits and Psychiatric Disorders

    Get PDF
    Background: Despite its estimated high heritability, the genetic architecture leading to differences in cognitive performance remains poorly understood. Different cortical regions play important roles in normal cognitive functioning and impairment. Recently, we reported on sets of regionally enriched genes in three different cortical areas (frontomedial, temporal and occipital cortices) of the adult rat brain. It has been suggested that genes preferentially, or specifically, expressed in one region or organ reflect functional specialisation. Employing a gene-based approach to the analysis, we used the regionally enriched cortical genes to mine a genome-wide association study (GWAS) of the Norwegian Cognitive NeuroGenetics (NCNG) sample of healthy adults for association to nine psychometric tests measures. In addition, we explored GWAS data sets for the serious psychiatric disorders schizophrenia (SCZ) (n = 3 samples) and bipolar affective disorder (BP) (n = 3 samples), to which cognitive impairment is linked. Principal Findings: At the single gene level, the temporal cortex enriched gene RAR-related orphan receptor B (RORB) showed the strongest overall association, namely to a test of verbal intelligence (Vocabulary, P = 7.7E-04). We also applied gene set enrichment analysis (GSEA) to test the candidate genes, as gene sets, for enrichment of association signal in the NCNG GWAS and in GWASs of BP and of SCZ. We found that genes differentially expressed in the temporal cortex showed a significant enrichment of association signal in a test measure of non-verbal intelligence (Reasoning) in the NCNG sample. Conclusion: Our gene-based approach suggests that RORB could be involved in verbal intelligence differences, while the genes enriched in the temporal cortex might be important to intellectual functions as measured by a test of reasoning in the healthy population. These findings warrant further replication in independent samples on cognitive traits

    Neuronal correlates of affective theory of mind in schizophrenia out-patients : evidence for a baseline deficit

    No full text
    Background:Schizophrenia out-patients have deficits in affective theory of mind (ToM) but also on more basal levels of social cognition, such as the processing of neutral and emotional expressions. These deficits are associated with changes in brain activation in the amygdala and the superior temporal sulcus (STS). However, until now there have been no studies that examined these different levels of social cognition and their neurobiological underpinnings in patients within one design.Method:Sixteen medicated schizophrenia out-patients and 16 matched healthy controls were studied with functional magnetic resonance imaging (fMRI) during a social cognition task that allows the investigation of affective ToM (aToM), emotion recognition and the processing of neutral facial expressions.Results:Patients showed a deficit in emotion recognition and a more prominent deficit in aToM. The performance in aToM and in emotion recognition was correlated in the control group but not in the schizophrenia group. Region-of-interest analysis of functional brain imaging data revealed no difference between groups during aToM, but a hyperactivation in the schizophrenia group in the left amygdala and right STS during emotion recognition and the processing of neutral facial expressions.Conclusions:The results indicate that schizophrenia out-patients have deficits at several levels of social cognition and provide the first evidence that deficits on higher-order social cognitive processes in schizophrenia may be traced back to an aberrant processing of faces per se.publishe

    Activation of midbrain and ventral striatal regions implicates salience processing during a modified beads task.

    Get PDF
    IntroductionMetacognition, i.e. critically reflecting on and monitoring one's own reasoning, has been linked behaviorally to the emergence of delusions and is a focus of cognitive therapy in patients with schizophrenia. However, little is known about the neural processing underlying metacognitive function. To address this issue, we studied brain activity during a modified beads task which has been used to measure a "Jumping to Conclusions" (JTC) bias in schizophrenia patients.MethodsWe used functional magnetic resonance imaging to identify neural systems active in twenty-five healthy subjects when solving a modified version of the "beads task", which requires a probabilistic decision after a variable amount of data has been requested by the participants. We assessed brain activation over the duration of a trial and at the time point of decision making.ResultsAnalysis of activation during the whole process of probabilistic reasoning showed an extended network including the prefronto-parietal executive functioning network as well as medial parieto-occipital regions. During the decision process alone, activity in midbrain and ventral striatum was detected, as well as in thalamus, medial occipital cortex and anterior insula.ConclusionsOur data show that probabilistic reasoning shares neural substrates with executive functions. In addition, our finding that brain regions commonly associated with salience processing are active during probabilistic reasoning identifies a candidate mechanism that could underlie the behavioral link between dopamine-dependent aberrant salience and JTC in schizophrenia. Further studies with delusional schizophrenia patients will have to be performed to substantiate this link

    Neuronal correlates of social cognition in borderline personality disorder

    No full text
    Patients with borderline personality disorder (BPD) have severe problems in social interactions that might be caused by deficits in social cognition. Since the findings about social-cognitive abilities in BPD are inhomogeneous, ranging from deficits to superior abilities, we aimed to investigate the neuronal basis of social cognition in BPD. We applied a paradigm with three social cognition tasks, differing in their complexity: basal processing of faces with a neutral expression, recognition of emotions, and attribution of emotional intentions (affective ToM). A total of 13 patients with BPD and 13 healthy matched controls (HCs) were included in a functional magnet resonance imaging study. BPD patients showed no deficits in social cognition on the behavioral level. However, while HCs showed increasing activation in areas of the mirror neuron system with increasing complexity in the social-cognitive task, BPD patients had hypoactivation in these areas and hyperactivation in the amygdala which were not modulated by task complexity. This activation pattern seems to reflect an enhanced emotional approach in the processing of social stimuli in BPD that allows good performance in standardized social-cognitive tasks, but might be the basis of social-cognitive deficits in real-life social interactions.publishe

    Increased orbitofrontal cortex activation associated with "pro-obsessive" antipsychotic treatment in patients with schizophrenia

    No full text
    Background: Patients with schizophrenia have an approximately 10-fold higher risk for obsessive–compulsive symptoms (OCS) than the general population. A large subgroup seems to experience OCS as a consequence of second-generation antipsychotic agents (SGA), such as clozapine. So far little is known about underlying neural mechanisms.Methods: To investigate the role of SGA treatment on neural processing related to OCS in patients with schizophrenia, we stratified patients according to their monotherapy into 2 groups (group I: clozapine or olanzapine; group II: amisulpride or aripiprazole). We used an fMRI approach, applying a go/no-go task assessing inhibitory control and an n-back task measuring working memory.Results: We enrolled 21 patients in group I and 19 patients in group II. Groups did not differ regarding age, sex, education or severity of psychotic symptoms. Frequency and severity of OCS were significantly higher in group I and were associated with pronounced deficits in specific cognitive abilities. Whereas brain activation patterns did not differ during working memory, group I showed significantly increased activation in the orbitofrontal cortex (OFC) during response inhibition. Alterations in OFC activation were associated with the severity of obsessions and mediated the association between SGA treatment and co-occurring OCS on a trend level.Limitations: The main limitation of this study is its cross-sectional design.Conclusion: To our knowledge, this is the first imaging study conducted to elucidate SGA effects on neural systems related to OCS. We propose that alterations in brain functioning reflect a pathogenic mechanism in the development of SGA-induced OCS in patients with schizophrenia. Longitudinal studies and randomized interventions are needed to prove the suggested causal interrelations.publishe

    Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis

    No full text
    <div><p>Introduction</p><p>Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC), anterior cingulate (ACC) and orbitofrontal (OFC) cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a “Jumping to Conclusions” probabilistic reasoning task.</p><p>Methods</p><p>We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages.</p><p>Results</p><p>Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices) all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information), while for prefrontal areas a wider multivariate pattern of activity was maximally informative.</p><p>Conclusions/Significance</p><p>We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns measured by fMRI. This method can be a valuable tool to assess how area-specific processing is altered in psychiatric disorders such as schizophrenia, and in healthy subjects carrying different genetic polymorphisms.</p></div

    Induction and quantification of prefrontal cortical network plasticity using 5 Hz rTMS and fMRI

    No full text
    Neuronal plasticity is crucial for flexible interaction with a changing environment and its disruption is thought to contribute to psychiatric diseases like schizophrenia. High-frequency repetitive transcranial magnetic stimulation (rTMS) is a noninvasive tool to increase local excitability of neurons and induce short-time functional reorganization of cortical networks. While this has been shown for the motor system, little is known about the short-term plasticity of networks for executive cognition in humans. We examined 12 healthy control subjects in a crossover study with fMRI after real and sham 5 Hz rTMS to the right dorsolateral prefrontal cortex (DLPFC). During scanning, subjects performed an n-back working memory (WM) task and a flanker task engaging cognitive control. Reaction times during the n-back task were significantly shorter after rTMS than after sham stimulation. RTMS compared with sham stimulation caused no activation changes at the stimulation site (right DLPFC) itself, but significantly increased connectivity within the WM network during n-back and reduced activation in the anterior cingulate cortex during the flanker task. Reduced reaction times after real stimulation support an excitatory effect of high-frequency rTMS. Our findings identified plastic changes in prefrontally connected networks downstream of the stimulation site as the substrate of this behavioral effect. Using a multimodal fMRI-rTMS approach, we could demonstrate changes in cortical plasticity in humans during executive cognition. In further studies this approach could be used to study pharmacological, genetic and disease-related alterations.publishe

    Reduced activation in ventral striatum and ventral tegmental area during probabilistic decision-making in schizophrenia

    No full text
    Patients with schizophrenia suffer from deficits in monitoring and controlling their own thoughts. Within these so-called metacognitive impairments, alterations in probabilistic reasoning might be one cognitive phenomenon disposing to delusions. However, so far little is known about alterations in associated brain functionality. A previously established task for functional magnetic resonance imaging (fMRI), which requires a probabilistic decision after a variable amount of stimuli, was applied to 23 schizophrenia patients and 28 healthy controls matched for age, gender and educational levels. We compared activation patterns during decision-making under conditions of certainty versus uncertainty and evaluated the process of final decision-making in ventral striatum (VS) and ventral tegmental area (VTA). We replicated a pre-described extended cortical activation pattern during probabilistic reasoning. During final decision-making, activations in several fronto- and parietocortical areas, as well as in VS and VTA became apparent. In both of these regions schizophrenia patients showed a significantly reduced activation. These results further define the network underlying probabilistic decision-making. The observed hypo-activation in regions commonly associated with dopaminergic neurotransmission fits into current concepts of disrupted prediction error signaling in schizophrenia and suggests functional links to reward anticipation. Forthcoming studies with patients at risk for psychosis and drug-naive first episode patients are necessary to elucidate the development of these findings over time and the interplay with associated clinical symptoms.publishe
    • …
    corecore