63 research outputs found

    A gathering of minds: expanding understanding of the origins of biological diversity and the evolution of developmental mechanisms

    Get PDF
    This paper is a short report on the 2012 Society of Integrative and Comparative Biology Annual Meeting. Charleston, South Carolina, USA. 3-7 January 2012 (abstracts freely available at http://www.sicb.org/meetings/2012/)

    Instructional Models for Course-Based Research Experience (CRE) Teaching

    Get PDF
    The course-based research experience (CRE) with its documented educational benefits is increasingly being implemented in science, technology, engineering, and mathematics education. This article reports on a study that was done over a period of 3 years to explicate the instructional processes involved in teaching an undergraduate CRE. One hundred and two instructors from the established and large multi-institutional SEA-PHAGES program were surveyed for their understanding of the aims and practices of CRE teaching. This was followed by large-scale feedback sessions with the cohort of instructors at the annual SEA Faculty Meeting and subsequently with a small focus group of expert CRE instructors. Using a qualitative content analysis approach, the survey data were analyzed for the aims of inquiry instruction and pedagogical practices used to achieve these goals. The results characterize CRE inquiry teaching as involving three instructional models: 1) being a scientist and generating data; 2) teaching procedural knowledge; and 3) fostering project ownership. Each of these models is explicated and visualized in terms of the specific pedagogical practices and their relationships. The models present a complex picture of the ways in which CRE instruction is conducted on a daily basis and can inform instructors and institutions new to CRE teaching

    Models of classroom assessment for course-based research experiences

    Get PDF
    Course-based research pedagogy involves positioning students as contributors to authentic research projects as part of an engaging educational experience that promotes their learning and persistence in science. To develop a model for assessing and grading students engaged in this type of learning experience, the assessment aims and practices of a community of experienced course-based research instructors were collected and analyzed. This approach defines four aims of course-based research assessment—(1) Assessing Laboratory Work and Scientific Thinking; (2) Evaluating Mastery of Concepts, Quantitative Thinking and Skills; (3) Appraising Forms of Scientific Communication; and (4) Metacognition of Learning—along with a set of practices for each aim. These aims and practices of assessment were then integrated with previously developed models of course-based research instruction to reveal an assessment program in which instructors provide extensive feedback to support productive student engagement in research while grading those aspects of research that are necessary for the student to succeed. Assessment conducted in this way delicately balances the need to facilitate students’ ongoing research with the requirement of a final grade without undercutting the important aims of a CRE education

    Structure and Function of a Scaphopod Captaculum

    No full text

    Structure and Function of a Scaphopod Captaculum

    No full text

    Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva

    Get PDF
    BACKGROUND: In many bilaterians, asymmetric activation of canonical Wnt (cWnt) signaling at the posterior pole is critical for anterior-posterior (AP) body axis formation. In 16-cell stage sea urchins, nuclearization of β-catenin in micromeres activates a gene regulatory network that defines body axes and induces endomesoderm. Transplanting micromeres to the animal pole of a host embryo induces ectopic endomesoderm in the mesomeres (ectoderm precursors) whereas inhibiting cWnt signaling blocks their endomesoderm-inducing activity and the micromeres become ectoderm-like. We have tested whether ectopic activation of cWnt signaling in mesomeres is sufficient to impart the cells with organizer-like abilities, allowing them to pattern normal embryonic body axes when recombined with a field of mesomeres. RESULTS: Fertilized eggs were microinjected with constitutively active Xenopus β-catenin (actβ-cat) mRNA and allowed to develop until the 16-cell stage. Two mesomeres from injected embryos were then recombined with isolated animal halves (AH) from uninjected 16-cell stage embryos. Control chimeras produced animalized phenotypes (hollow balls of ectoderm) and rarely formed skeletogenic mesoderm (SM)-derived spicules, endoderm or pigment cells, a type of non-skeletogenic mesoderm (NSM). In contrast, over half of the 0.5 pg/pL actβ-cat mesomere/AH chimeras formed a partial or complete gut (exhibiting AP polarity), contained mesenchyme-like cells similar to SM, and produced pigment cells. At three days, chimeras formed plutei with normal embryonic body axes. When fates of the actβ-cat mRNA-injected mesomeres were tracked, we found that injected mesomeres formed mesenchyme-like and pigment cells, but endoderm was induced. Higher concentrations of actβ-cat mRNA were less likely to induce endoderm or pigment cells, but had similar mesenchyme-like cell production to 0.5 pg/pL actβ-cat mesomere/AH chimeras. CONCLUSIONS: Our results show that nuclear β-catenin is sufficient to endow naïve cells with the ability to act as an organizing center and that β-catenin has both cell-autonomous and non-autonomous effects on cell fate specification in a concentration-dependent manner. These results are consistent with the hypothesis that a shift in the site of early cWnt signaling in cleaving embryos could have modified polarity of the main body axes during metazoan evolution

    Characterization of Circadian Behavior in the Starlet Sea Anemone, <em>Nematostella vectensis</em>

    Get PDF
    <div><h3>Background</h3><p>Although much is known about how circadian systems control daily cycles in the physiology and behavior of <em>Drosophila</em> and several vertebrate models, marine invertebrates have often been overlooked in circadian rhythms research. This study focuses on the starlet sea anemone, <em>Nematostella vectensis</em>, a species that has received increasing attention within the scientific community for its potential as a model research organism. The recently sequenced genome of <em>N. vectensis</em> makes it an especially attractive model for exploring the molecular evolution of circadian behavior. Critical behavioral data needed to correlate gene expression patterns to specific behaviors are currently lacking in <em>N. vectensis</em>.</p> <h3>Methodology/Principal Findings</h3><p>To detect the presence of behavioral oscillations in <em>N. vectensis</em>, locomotor activity was evaluated using an automated system in an environmentally controlled chamber. Animals exposed to a 24 hr photoperiod (12 hr light: 12 hr dark) exhibited locomotor behavior that was both rhythmic and predominantly nocturnal. The activity peak occurred in the early half of the night with a 2-fold increase in locomotion. Upon transfer to constant lighting conditions (constant light or constant dark), an approximately 24 hr rhythm persisted in most animals, suggesting that the rhythm is controlled by an endogenous circadian mechanism. Fourier analysis revealed the presence of multiple peaks in some animals suggesting additional rhythmic components could be present. In particular, an approximately 12 hr oscillation was often observed. The nocturnal increase in generalized locomotion corresponded to a 24 hr oscillation in animal elongation.</p> <h3>Conclusions/Significance</h3><p>These data confirm the presence of a light-entrainable circadian clock in <em>Nematostella vectensis</em>. Additional components observed in some individuals indicate that an endogenous clock of approximately 12 hr frequency may also be present. By describing rhythmic locomotor behavior in <em>N. vectensis</em>, we have made important progress in developing the sea anemone as a model organism for circadian rhythm research.</p> </div

    Unimodal and bimodal behavior patterns in animals housed in 12 hr light: 12 hr dark (LD).

    No full text
    <p>24-hr profile of locomotor behavior in individual <i>N. vectensis</i> showing A) unimodal or B) bimodal patterns of activity. Dark bars indicate lights off and white bars indicate lights on. The red line indicates a calculated moving average of 10 bins. C) 24 hr profile of locomotor behavior averaged from 18 animals (group data) showing unimodal pattern of activity. D, E) FFT analysis of the same individuals showing a strong frequency component at approximately 24 hours. E) Example of FFT analysis from an individual showing a prominent bimodal pattern of activity with a higher frequency peak at approximately 11 hours. F) FFT analysis of group data showing a strong frequency component at approximately 24 hours. All FFT analyses were conducted on raw data over the 4 days in LD.</p
    • …
    corecore