109 research outputs found

    High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells

    Get PDF
    The best-characterized type 1 interferon (IFN) signaling pathway depends on signal transducer and activator of transcription 1 (STAT1) and STAT2. The cytokines can, however, conditionally activate all STATs. Regulation of their access to particular signaling pathways is poorly understood. STAT4 is important for IFN-γ induction, and NK cells are major producers of this cytokine. We report that NK cells have high basal STAT4 levels and sensitivity to type 1 IFN–mediated STAT4 activation for IFN-γ production. Increases in STAT1, driven during viral infection by either type 1 IFN or IFN-γ, are associated with decreased STAT4 access. Both STAT1 and STAT2 are important for antiviral defense, but STAT1 has a unique role in protecting against sustained NK cell IFN-γ production and resulting disease. The regulation occurs with an NK cell type 1 IFN receptor switch from a STAT4 to a STAT1 association. Thus, a fundamental characteristic of NK cells is high STAT4 bound to the type 1 IFN receptor. The conditions of infection result in STAT1 induction with displacement of STAT4. These studies elucidate the critical role of STAT4 levels in predisposing selection of specific signaling pathways, define the biological importance of regulation within particular cell lineages, and provide mechanistic insights for how this is accomplished in vivo

    Dendritic Cell Responses to Early Murine Cytomegalovirus Infection: Subset Functional Specialization and Differential Regulation by Interferon α/β

    Get PDF
    Differentiation of dendritic cells (DCs) into particular subsets may act to shape innate and adaptive immune responses, but little is known about how this occurs during infections. Plasmacytoid dendritic cells (PDCs) are major producers of interferon (IFN)-α/β in response to many viruses. Here, the functions of these and other splenic DC subsets are further analyzed after in vivo infection with murine cytomegalovirus (MCMV). Viral challenge induced PDC maturation, their production of high levels of innate cytokines, and their ability to activate natural killer (NK) cells. The conditions also licensed PDCs to efficiently activate CD8 T cells in vitro. Non-plasmacytoid DCs induced T lymphocyte activation in vitro. As MCMV preferentially infected CD8α+ DCs, however, restricted access to antigens may limit plasmacytoid and CD11b+ DC contribution to CD8 T cell activation. IFN-α/β regulated multiple DC responses, limiting viral replication in all DC and IL-12 production especially in the CD11b+ subset but promoting PDC accumulation and CD8α+ DC maturation. Thus, during defense against a viral infection, PDCs appear specialized for initiation of innate, and as a result of their production of IFN-α/β, regulate other DCs for induction of adaptive immunity. Therefore, they may orchestrate the DC subsets to shape endogenous immune responses to viruses

    Interferon α/β and Interleukin 12 Responses to Viral Infections: Pathways Regulating Dendritic Cell Cytokine Expression In Vivo

    Get PDF
    Interferon (IFN)-α/β and interleukin (IL)-12 are cytokines critical in defense against viruses, but their cellular sources and mechanisms of regulation for in vivo expression remain poorly characterized. The studies presented here identified a novel subset of dendritic cells (DCs) as major producers of the cytokines during murine cytomegalovirus (MCMV) but not lymphocytic choriomeningitis virus (LCMV) infections. These DCs differed from those activated by Toxoplasma antigen but were related to plasmacytoid cells, as assessed by their CD8α+Ly6G/C+CD11b− phenotype. Another DC subset (CD8α2Ly6G/C−CD11b+) also contributed to IL-12 production in MCMV-infected immunocompetent mice, modestly. However, it dramatically increased IL-12 expression in the absence of IFN-α/β functions. Conversely, IFN-α/β production was greatly reduced under these conditions. Thus, a cross-regulation of DC subset cytokine responses was defined, whereby secretion of type I IFNs by CD8α+ DCs resulted in responses limiting IL-12 expression by CD11b+ DCs but enhancing overall IFN-α/β production. Taken together, these data indicate that CD8α+Ly6G/C+CD11b− DCs play important roles in limiting viral replication and regulating immune responses, through cytokine production, in some but not all viral infections. They also illustrate the plasticity of cellular sources for innate cytokines in vivo and provide new insights into the roles of IFNs in shaping immune responses to viruses

    Immune Cell Profiling of IFN-[lambda] Response Shows pDCs Express Highest Level of IFN-[lambda]R1 and Are Directly Responsive via the JAK-STAT Pathway

    Get PDF
    The interferon lambda (IFN-l) cytokines have well-known antiviral properties, yet their contribution to immune regulation is not well understood. Epithelial cells represent the major target cell of IFN-l; peripheral blood mononuclear cells are generally considered nonresponsive, with the exception of plasmacytoid dendritic cells (pDCs). In this study we aimed to define the potential for discrete subpopulations of cells to directly respond to IFN-l. Analysis of peripheral blood leukocytes reveals that, while pDCs uniformly express the highest levels of IFN-l receptor, a small proportion of B cells and monocytes also express the receptor. Nevertheless, B cells and monocytes respond poorly to IFN-l stimulation in vitro, with minimal STAT phosphorylation and interferonstimulated gene (ISG) induction observed. We confirm that pDCs respond to IFN-l in vitro, upregulating their expression of pSTAT1, pSTAT3, and pSTAT5. However, we found that pDCs do not upregulate pSTAT6 in response to IFN-l treatment. Our results highlight unique aspects of the response to IFN-l and confirm that while the IFN-l receptor is expressed by a small proportion of several different circulating immune cell lineages, under normal conditions only pDCs respond to IFN-l stimulation with robust STAT phosphorylation and ISG induction. The difference in STAT6 responsiveness of pDCs to type I and type III interferons may help explain the divergence in their biological activities

    T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response

    Get PDF
    The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4(+) T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4(+) T cell memory to influenza immunity, (ii) the essential role CD4(+) T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4(+) T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets

    Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection

    Get PDF
    Natural killer (NK) cells have the potential to deliver both direct antimicrobial effects and regulate adaptive immune responses, but NK cell yields have been reported to vary greatly during different viral infections. Activating receptors, including the Ly49H molecule recognizing mouse cytomegalovirus (MCMV), can stimulate NK cell expansion. To define Ly49H's role in supporting NK cell proliferation and maintenance under conditions of uncontrolled viral infection, experiments were performed in Ly49h−/−, perforin 1 (Prf1)−/−, and wild-type (wt) B6 mice. NK cell numbers were similar in uninfected mice, but relative to responses in MCMV-infected wt mice, NK cell yields declined in the absence of Ly49h and increased in the absence of Prf1, with high rates of proliferation and Ly49H expression on nearly all cells. The expansion was abolished in mice deficient for both Ly49h and Prf1 (Ly49h−/−Prf1−/−), and negative consequences for survival were revealed. The Ly49H-dependent protection mechanism delivered in the absence of Prf1 was a result of interleukin 10 production, by the sustained NK cells, to regulate the magnitude of CD8 T cell responses. Thus, the studies demonstrate a previously unappreciated critical role for activating receptors in keeping NK cells present during viral infection to regulate adaptive immune responses

    S-Adenosyl-Methionine and Betaine Improve Early Virological Response in Chronic Hepatitis C Patients with Previous Nonresponse

    Get PDF
    Treatment of chronic hepatitis C (CHC) with pegylated interferon (pegIFN ) and ribavirin results in a sustained response in approximately half of patients. Viral interference with IFN signal transduction through the Jak-STAT pathway might be an important factor underlying treatment failure. S-adenosyl-L-methionine (SAMe) and betaine potentiate IFN signaling in cultured cells that express hepatitis C virus (HCV) proteins, and enhance the inhibitory effect of IFN on HCV replicons. We have performed a clinical study with the aim to evaluate efficacy and safety of the addition of SAMe and betaine to treatment of CHC with pegIFN /ribavirin
    corecore