2,835 research outputs found

    Point singularity array with metasurfaces

    Full text link
    Phase singularities are loci of darkness surrounded by monochromatic light in a scalar field, with applications in optical trapping, super-resolution imaging, and structured light-matter interactions. Although 1D singular structures, such as optical vortices, are the most common due to their robust topological properties, uncommon 0D (point) and 2D (sheet) singular structures can be generated by wavefront-shaping devices such as metasurfaces. Here, using the design flexibility of metasurfaces, we deterministically position ten identical point singularities in a cylindrically symmetric field generated by a single illumination source. The phasefront is inverse-designed using phase gradient maximization with an automatically-differentiable propagator. This process produces tight longitudinal intensity confinement. The singularity array is experimentally realized with a 1 mm diameter TiO2 metasurface. One possible application is blue-detuned neutral atom trap arrays, for which this light field would enforce 3D confinement and a potential depth around 0.22 mK per watt of incident trapping laser power. Metasurface-enabled point singularity engineering may significantly simplify and miniaturize the optical architecture required to produce super-resolution microscopes and dark traps

    The National Childrens Study: An Introduction and Historical Overview

    Get PDF
    The National Children’s Study (NCS) was an ambitious attempt to map children’s health and development in a large representative group of children in the United States. In this introduction, we briefly review the background of the NCS and the history of the multiple strategies that were tested to recruit women and children. Subsequent articles then detail the protocols and outcomes of 4 of the recruitment strategies. It is hoped that lessons learned from these attempts to define a study protocol that could achieve the initial aims of the NCS will inform future efforts to conceptualize and execute strategies to provide generalizable insights on the longitudinal health of our nation’s children

    Commissioning Status of the Fritz Haber Institute THz FEL

    No full text
    The THz Free-Electron Laser (FEL) at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin is designed to deliver radiation from 3 to 300 microns using a single-plane-focusing mid-IR undulator and a two-plane-focusing far-IR undulator that acts as a waveguide for the optical mode. A key aspect of the accelerator performance is the low longitudinal emittance, < 50 keV-psec, that is specified to be delivered at 200 pC bunch charge and 50 MeV from a gridded thermionic electron source. We utilize twin accelerating structures separated by a chicane to deliver the required performance over the < 20 - 50 MeV energy range. The first structure operates at near fixed field while the second structure controls the output energy, which, under some conditions, requires running in a decelerating mode. "First Light" is targeted for the centennial of the sponsor in October 2011 and we will describe progress in the commissioning of this device to achieve this goal. Specifically, the measured performance of the accelerated electron beam will be compared to design simulations and the observed matching of the beam to the mid-IR wiggler will be described

    Status of the Fritz Haber Institute THz FEL

    No full text
    The THz FEL at the Fritz Haber Institute (FHI) in Berlin is designed to deliver radiation from 4 to 400 microns. A single-plane-focusing undulator combined with a 5.4 m long cavity is used is the mid-IR (< 50 micron), while a two-plane-focusing undulator in combination with a 7.2 m long cavity with a 1-d waveguide for the optical mode is used for the far-IR. A key aspect of the accelerator performance is low longitudinal emittance, < 50 keV-psec, at 200 pC bunch charge and 50 MeV from a gridded thermionic electron source. We utilize twin accelerating structures separated by a chicane to deliver the required performance over the < 20 - 50 MeV energy range. The first structure operates at near fixed field while the second structure controls the output energy, which, under some conditions, requires running in a decelerating mode. "First Light" is targeted for the centennial of the FHI in October 2011 and we will describe progress in the commissioning of this device. Specifically, the measured performance of the accelerated electron beam will be compared to design simulations and the observed matching of the beam to the mid-IR wiggler will be described

    The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF&lt;sub&gt;6&lt;/sub&gt;)

    Get PDF
    We report a 40-year history of SF6 atmospheric mole fractions measured at the Advanced Global Atmospheric Gases Experiment (AGAGE) monitoring sites, combined with archived air samples, to determine emission estimates from 1978 to 2018. Previously we reported a global emission rate of 7.3±0.6 Gg yr-1 in 2008 and over the past decade emissions have continued to increase by about 24% to 9.04±0.35 Gg yr-1 in 2018. We show that changing patterns in SF6 consumption from developed (Kyoto Protocol Annex-1) to developing countries (non-Annex-1) and the rapid global expansion of the electric power industry, mainly in Asia, have increased the demand for SF6-insulated switchgear, circuit breakers, and transformers. The large bank of SF6 sequestered in this electrical equipment provides a substantial source of emissions from maintenance, replacement, and continuous leakage. Other emissive sources of SF6 occur from the magnesium, aluminium, and electronics industries as well as more minor industrial applications. More recently, reported emissions, including those from electrical equipment and metal industries, primarily in the Annex-1 countries, have declined steadily through substitution of alternative blanketing gases and technological improvements in less emissive equipment and more efficient industrial practices. Nevertheless, there are still demands for SF6 in Annex-1 countries due to economic growth, as well as continuing emissions from older equipment and additional emissions from newly installed SF6-insulated electrical equipment, although at low emission rates. In addition, in the non-Annex-1 countries, SF6 emissions have increased due to an expansion in the growth of the electrical power, metal, and electronics industries to support their continuing development. There is an annual difference of 2.5-5 Gg yr-1 (1990-2018) between our modelled top-down emissions and the UNFCCC-reported bottom-up emissions (United Nations Framework Convention on Climate Change), which we attempt to reconcile through analysis of the potential contribution of emissions from the various industrial applications which use SF6. We also investigate regional emissions in East Asia (China, S. Korea) and western Europe and their respective contributions to the global atmospheric SF6 inventory. On an average annual basis, our estimated emissions from the whole of China are approximately 10 times greater than emissions from western Europe. In 2018, our modelled Chinese and western European emissions accounted for ∼36% and 3.1 %, respectively, of our global SF6 emissions estimate.NASA (Grant NAG5-12669, NNX07AE89G and NNX11AF17G)NOAA (Contract RA-133R-15-CN-0008

    Rabies screen reveals GPe control of cocaine-triggered plasticity.

    Get PDF
    Identification of neural circuit changes that contribute to behavioural plasticity has routinely been conducted on candidate circuits that were preselected on the basis of previous results. Here we present an unbiased method for identifying experience-triggered circuit-level changes in neuronal ensembles in mice. Using rabies virus monosynaptic tracing, we mapped cocaine-induced global changes in inputs onto neurons in the ventral tegmental area. Cocaine increased rabies-labelled inputs from the globus pallidus externus (GPe), a basal ganglia nucleus not previously known to participate in behavioural plasticity triggered by drugs of abuse. We demonstrated that cocaine increased GPe neuron activity, which accounted for the increase in GPe labelling. Inhibition of GPe activity revealed that it contributes to two forms of cocaine-triggered behavioural plasticity, at least in part by disinhibiting dopamine neurons in the ventral tegmental area. These results suggest that rabies-based unbiased screening of changes in input populations can identify previously unappreciated circuit elements that critically support behavioural adaptations

    Catastrophizing mediates the relationship between the personal belief in a just world and pain outcomes among chronic pain support group attendees

    Get PDF
    Health-related research suggests the belief in a just world can act as a personal resource that protects against the adverse effects of pain and illness. However, currently, little is known about how this belief, particularly in relation to one’s own life, might influence pain. Consistent with the suggestions of previous research, the present study undertook a secondary data analysis to investigate pain catastrophizing as a mediator of the relationship between the personal just world belief and chronic pain outcomes in a sample of chronic pain support group attendees. Partially supporting the hypotheses, catastrophizing was negatively correlated with the personal just world belief and mediated the relationship between this belief and pain and disability, but not distress. Suggestions for future research and intervention development are made

    Directed Induction of Functional Motor Neuron-Like Cells from Genetically Engineered Human Mesenchymal Stem Cells

    Get PDF
    Cell replacement using stem cells is a promising therapeutic approach to treat degenerative motor neuron (MN) disorders, such as amyotrophic lateral sclerosis and spinal cord injury. Human bone marrow-derived mesenchymal stem cells (hMSCs) are a desirable cell source for autologous cell replacement therapy to treat nervous system injury due to their plasticity, low immunogenicity, and a lower risk of tumor formation than embryonic stem cells. However, hMSCs are inefficient with regards to differentiating into MN-like cells. To solve this limitation, we genetically engineered hMSCs to express MN-associated transcription factors, Olig2 and Hb9, and then treat the hMSCs expressing Olig2 and Hb9 with optimal MN induction medium (MNIM). This method of induction led to higher expression (>30% of total cells) of MN markers. Electrophysiological data revealed that the induced hMSCs had the excitable properties of neurons and were able to form functional connections with muscle fibers in vitro. Furthermore, when the induced hMSCs were transplanted into an injured organotypic rat spinal cord slice culture, an ex vivo model of spinal cord injury, they exhibited characteristics of MNs. The data strongly suggest that induced Olig2/Hb9-expressing hMSCs were clearly reprogrammed and directed toward a MN-like lineage. We propose that methods to induce Olig2 and Hb9, followed by further induction with MNIM have therapeutic potential for autologous cell replacement therapy to treat degenerative MN disorders
    corecore