3,448 research outputs found

    Retransmission of Hydrometric Data in Canada

    Get PDF
    There are no author-identified significant results in this report

    Formation and removal of alkylthiolate self-assembled monolayers on gold in aqueous solutions

    Get PDF
    We report the development of novel reagents and approaches for generating recyclable biosensors. The use of aqueous media for the formation of protein binding alkylthiolate monolayers on Au surfaces results in accelerated alkylthiolate monolayer formation and improvement in monolayer integrity as visualized by fluorescence microscopy and CV techniques. We have also developed an electrocleaning protocol that is compatible with microfluidics devices, and this technique serves as an on-chip method for cleaning Au substrates both before and after monolayer formation. The techniques for the formation and dissociation of biotinylated SAMs from aqueous solvents reported here may be applied towards the development of Au-based sensor devices and microfluidics chips in the future. A potential use of these devices includes the specific capture and triggered release of target cells, proteins, or small molecules from liquid samples

    An Apple Extract Beverage Combined with Caffeine Can Improve Alertness, Mental Fatigue, and Information Processing Speed

    Get PDF
    The psychological effects of low-dose caffeine combined with polyphenols from apples have rarely been explored scientifically yet synergistic effects are plausible. A randomized, double-blind, placebo-controlled cross-over experiment was used to test the psychological effects of apple extract beverages combined with 10, 20, 37.5, and 75 mg caffeine. Comparisons were made to both a placebo drink that was artificially sweetened and colored to mimic the test beverages and a positive control drink with 75 mg caffeine but without apple extract. Compared to placebo, it was hypothesized that dose-dependent improvements in cognitive performance, mood, and motivation would be realized after consuming the beverage with apple extract containing added caffeine. Outcomes were assessed before, 60 to 110, and 125 to 175 min post-beverage. The positive control beverage resulted in more serial seven subtractions, greater motivation to perform cognitive tasks, and reduced feelings of fatigue (all p \u3c .005). The study found that psychological effects (i) were not observed for beverages containing apple extract and 10 or 20 mg caffeine, (ii) of the apple extract beverage containing 75 mg caffeine generally mimicked the effects of the positive control drink and significantly increased serial seven processing speed, and (iii) of the apple extract beverage containing 37.5 mg improved feelings of alertness and mental fatigue. In sum, effects of apple extract combined with caffeine were not dose-dependent; the apple extract beverage containing 75 mg caffeine improved information processing speed and the apple extract beverage with 37.5 mg caffeine improved feelings of alertness and mental fatigue

    The Impact of Squat Velocity on Force, Power, and Muscle Activity

    Get PDF
    The squat is a thoroughly examined movement pattern and commonly used in sport performance training protocols, rehabilitation programs, and recreational exercise. Previous research measuring absolute strength has shown hamstring muscle activity in a six-repetition max barbell back squats. PURPOSE: The purpose of this study is to examine the effects of varying squat velocities (25, 50, 75 deg/s) on force, power, and the activation of the quadricep and hamstring muscles. Using a single-blind randomized research design, we hypothesized that hamstring muscle activity will increase at faster squat velocities. Our secondary hypothesis is that peak power will occur at 50 deg/s and peak force will occur at 25 deg/s. Muscle activity for both the hamstring and quadriceps was measured as root mean square (RMS) electromyography (EMG) and expressed as a percentage of the maximum voluntary contraction (MVC). Muscle activity, force output, and power output were measured over five consecutive repetitions of each velocity in a randomized order. METHODS: Twelve healthy adults (10 males, 2 females) participated in this investigation. Three Delsys Trigno EMG electrodes were placed on the right leg of all participants as they performed the MVC and squat trials on the isokinetic machine. One was placed on the posterior side (biceps femoris [BF]) to measure hamstring activity and two were placed on the anterior side (vastus medialis [VM] and vastus lateralis [VL]) to measure quadricep activity. An isokinetic training machine was used to test the participant’s squat performance at pre-set velocities (Ariel Computerized Exercise System, CA). These machines have been used to measure force and power relationships. MVC was found using an adjustable bench with a padded immovable leg extension attachment. For the quadriceps, the participant sat on the bench in an upright position with the leg extended to approximately 110 degrees against the attachment. Hamstring MVC was measured in a standing position with the leg of interest flexed to approximately 110 degrees with the leg extension attachment behind the lower leg. Three trials of MVC were performed for both knee flexion and extension so results during squat trials can be expressed as a percentage of MVC. Following the MVC, participants then underwent experimental trials. The squat movement pattern was standardized to a depth of 90 degrees of knee flexion measured via goniometry and maintained during each trial using an adjustable height box, set to a predetermined height. Feet were instructed to remain at approximately shoulder width with knees tracking along the same line as the feet to avoid knee misalignment to avoid injury and potentially alter muscle activity. Five consecutive repetitions at each velocity (25, 50, and 75 deg/s) were performed with at least two minutes of rest between trials. For each trial, repetitions two, three, and four were used to determine average and peak power and force. RESULTS: To determine the magnitude of BF muscle activity, we compared it to the degree of quadricep muscle activity (VL:BF and VM:BF) for each squat velocity and analyzed using a one-way ANOVA. This relative hamstring muscle activity was highest at 75 deg/s for VL:BF at 3.84% and at 50 deg/s for VM:BF at 4.59% However, the difference in BF activity involved at each squat velocity was not statistically significant (p = 0.2973). The highest average peak power was achieved at a velocity of 50 deg/s with a value of 1538.19 ± 717.2 W. The greatest average peak force was found at a velocity of 25 deg/s with a value of 1574.08 N ± 605.8 W. When analyzing the peak force within the three velocity groups, a statistically significant difference was found with a p \u3c 0.0001. This was also seen with the average force within the three velocity groups with a p \u3c 0.0001. No statistically significant difference was found for either peak or average power among the three velocity groups. CONCLUSION: When comparing the degree of BF involved during the squat movement, the 25 deg/s had the lowest relative to the quadricep musculature, while both the 50 deg/s and 75 deg/s had higher relative BF activity. As expected, a U-trend was observed with average peak power observed at 50 deg/s, with a decrease at both 25 and 75 deg/s – further confirming the established power-velocity relationship. However, this difference was not statistically significant with our participant size. As velocity increased, force decreased – further confirming the established force-velocity relationship. These results proved to be statistically significant

    Effects of High Heeled Gait on Knee Joint Mechanics

    Get PDF
    Numerous women wear high heeled shoes, whether it be a professional attire, part of an outfit for a ballroom gala, or just casual day to day wear. Often, the high heel of choice in these situations is the stiletto. These shoes adversely affect natural gait and have the potential to alter joint mechanics in the knee during gait. PURPOSE: This study is designed to analyze the impacts of wearing high heels, and if it puts the user at a higher risk of a degenerative condition with repeated use. We hypothesized that all of our dependent variables would see a significant increase when wearing high heels. METHODS: For the scope of this project, we narrowed our analysis to the knee joint and ground reaction force loading rate. We designed this study using a Cortex motion capture system along with force plates to conduct a series of experiments. Six college aged women with experience walking in high heels and no injury or condition that would adversely affect normal gait were selected to participate in motion analysis experiments. There are 4 trials conducted in total, which include walking, and performing a lateral stepping motion to simulate dancing, each under barefoot and high heeled conditions. The variables we set out to analyze include knee compressive force, flexion moment, varus and valgus moments, ground loading rate, and EMG peak activity for muscles including medial and lateral gastrocnemius, vastus lateralis, and biceps femoris. All force data was normalized by body weight to compare across participants. RESULTS: After processing the data and performing a statistical analysis using a paired T-test with significance of α \u3c 0.05, we found the variables with a significant difference between barefoot and high heels is the knee compressive force during gait (P = 0.001) and loading rate from the ground reaction force (P = 0.009). CONCLUSION: This indicates that wearing high heels can significantly increase knee joint loading

    Association between Antibodies to the MR 67,000 Isoform of Glutamate Decarboxylase (GAD) and Type 1 (Insulin-Dependent) Diabetes Mellitus with Coexisting Autoimmune Polyendocrine Syndrome Type II

    Get PDF
    By using an immunoprecipitation assay, we analysed reactivity of autoantibodies to human recombinant GAD65 and GAD67 in sera from patients with autoimmune polyendocrine syndrome Type II (APS II) with and without Type 1 (insulin-dependent) diabetes mellitus (IDDM) compared to patients with organ-specific autoimmunity. Overall antibodies to GAD65 were correlated with IDDM in all study groups, whereas GAD67 antibodies were associated with IDDM when APS II coexists. Antibodies to GAD65 and GAD67 were detected in 13 (44.8%) and 7 (24.1%) out of 29 APS II patients with IDDM, but in only 4 (13.8%) and 2 (6.9%) out of 29 APS II patients without IDDM, respectively (p < 0.05). In short-standing IDDM (< 1 year), antibodies to GAD67 were significantly more frequent in patients with APS II (5 of 9 [55.6%] subjects) compared to matched diabetic patients without coexisting polyendocrinopathy (1 of 18 [5.6%] subjects) (p < 0.02). The levels of GAD65 (142 ± 90 AU) and GAD67 antibodies (178 ± 95 AU) were significantly higher in patients with polyglandular disease than in patients with isolated IDDM (91 ± 85 AU and 93 ± 57 AU) (p < 0.02). Interestingly, all 11 GAD67 antibody positive subjects also had GAD65 antibodies (p < 0.0001), and in 10 of 11 anti-GAD67 positive sera the GAD67 antibodies could be blocked by either GAD67 or GAD65, suggesting the presence of cross-reactive autoantibodies. No correlation was observed between GAD antibodies and age, sex or any particular associated autoimmune disease, besides IDDM. GAD antibodies were present in only 1 of 6 (16.7%) patients with APS Type I, in 1 of 26 (3.9%) patients with autoimmune thyroid disease but in none of the patients with Addison's disease (n = 16), pernicious anaemia (n = 7) or normal controls (n = 50). Our data suggest distinct antibody specificities reactive to GAD isoforms in APS II and IDDM, which might reflect different mechanisms of autoimmune response in IDDM with coexisting autoimmune polyendocrine autoimmunity

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio
    • …
    corecore