8,961 research outputs found
Preliminary evaluation of radar imagery of Yellowstone Park, Wyoming
Evaluation of radar imagery of Yellowstone Park, Wyomin
Discovery of the spectroscopic binary nature of three bright southern Cepheids
We present an analysis of spectroscopic radial velocity and photometric data
of three bright Galactic Cepheids: LR Trianguli Australis (LR TrA), RZ Velorum
(RZ Vel), and BG Velorum (BG Vel). Based on new radial velocity data, these
Cepheids have been found to be members of spectroscopic binary systems.
The ratio of the peak-to-peak radial velocity amplitude to photometric
amplitude indicates the presence of a companion for LR TrA and BG Vel. IUE
spectra indicate that the companions of RZ Vel and BG Vel cannot be hot stars.
The analysis of all available photometric data revealed that the pulsation
period of RZ Vel and BG Vel varies monotonically, due to stellar evolution.
Moreover, the longest period Cepheid in this sample, RZ Vel, shows period
fluctuations superimposed on the monotonic period increase. The light-time
effect interpretation of the observed pattern needs long-term photometric
monitoring of this Cepheid. The pulsation period of LR TrA has remained
constant since the discovery of its brightness variation.
Using statistical data, it is also shown that a large number of spectroscopic
binaries still remain to be discovered among bright classical Cepheids.Comment: 9 pages, 14 figure
Discovery of TUG-770: a highly potent free fatty acid receptor 1 (FFA1/GPR40) agonist for treatment of type 2 diabetes
Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing
Discovery of the spectroscopic binary nature of six southern Cepheids
We present the analysis of photometric and spectroscopic data of six bright
Galactic Cepheids: GH Carinae, V419 Centauri, V898 Centauri, AD Puppis, AY
Sagittarii, and ST Velorum. Based on new radial velocity data (in some cases
supplemented with earlier data available in the literature), these Cepheids
have been found to be members in spectroscopic binary systems. V898 Cen turned
out to have one of the largest orbital radial velocity amplitude (> 40 km/s)
among the known binary Cepheids. The data are insufficient to determine the
orbital periods nor other orbital elements for these new spectroscopic
binaries.
These discoveries corroborate the statement on the high frequency of
occurrence of binaries among the classical Cepheids, a fact to be taken into
account when calibrating the period-luminosity relationship for Cepheids.
We have also compiled all available photometric data that revealed that the
pulsation period of AD Pup, the longest period Cepheid in this sample, is
continuously increasing with Delta P = 0.004567 d/century, likely to be caused
by stellar evolution. The wave-like pattern superimposed on the parabolic O-C
graph of AD Pup may well be caused by the light-time effect in the binary
system. ST Vel also pulsates with a continuously increasing period. The other
four Cepheids are characterised with stable pulsation periods in the last half
century.Comment: accepted by the MNRAS, 11 pages, 16 figures, 18 tables, a part of the
data can be downloaded from the online version of this articl
Nonlinear ac conductivity of one-dimensional Mott insulators
We discuss a semiclassical calculation of low energy charge transport in
one-dimensional (1d) insulators with a focus on Mott insulators, whose charge
degrees of freedom are gapped due to the combination of short range
interactions and a periodic lattice potential. Combining RG and instanton
methods, we calculate the nonlinear ac conductivity and interpret the result in
terms of multi-photon absorption. We compare the result of the semiclassical
calculation for interacting systems to a perturbative, fully quantum mechanical
calculation of multi-photon absorption in a 1d band insulator and find good
agreement when the number of simultaneously absorbed photons is large.Comment: Dedicated to Thomas Nattermann on the occasion of his 60th birthday.
To appear in JSTAT. 5 pages, 2 figure
A Monolithic Time Stretcher for Precision Time Recording
Identifying light mesons which contain only up/down quarks (pions) from those
containing a strange quark (kaons) over the typical meter length scales of a
particle physics detector requires instrumentation capable of measuring flight
times with a resolution on the order of 20ps. In the last few years a large
number of inexpensive, multi-channel Time-to-Digital Converter (TDC) chips have
become available. These devices typically have timing resolution performance in
the hundreds of ps regime. A technique is presented that is a monolithic
version of ``time stretcher'' solution adopted for the Belle Time-Of-Flight
system to address this gap between resolution need and intrinsic multi-hit TDC
performance.Comment: 9 pages, 15 figures, minor corrections made, to appear as JINST_008
eleanor: An open-source tool for extracting light curves from the TESS Full-Frame Images
During its two year prime mission the Transiting Exoplanet Survey Satellite
(TESS) will perform a time-series photometric survey covering over 80% of the
sky. This survey comprises observations of 26 24 x 96 degree sectors that are
each monitored continuously for approximately 27 days. The main goal of TESS is
to find transiting planets around 200,000 pre-selected stars for which fixed
aperture photometry is recorded every two minutes. However, TESS is also
recording and delivering Full-Frame Images (FFIs) of each detector at a 30
minute cadence. We have created an open-source tool, eleanor, to produce light
curves for objects in the TESS FFIs. Here, we describe the methods used in
eleanor to produce light curves that are optimized for planet searches. The
tool performs background subtraction, aperture and PSF photometry,
decorrelation of instrument systematics, and cotrending using principal
component analysis. We recover known transiting exoplanets in the FFIs to
validate the pipeline and perform a limited search for new planet candidates in
Sector 1. Our tests indicate that eleanor produces light curves with
significantly less scatter than other tools that have been used in the
literature. Cadence-stacked images, and raw and detrended eleanor light curves
for each analyzed star will be hosted on MAST, with planet candidates on
ExoFOP-TESS as Community TESS Objects of Interest (CTOIs). This work confirms
the promise that the TESS FFIs will enable the detection of thousands of new
exoplanets and a broad range of time domain astrophysics.Comment: 21 pages, 13 figures, 2 tables, Accepted to PAS
Propagating Torsion in 3D-Gravity and Dynamical Mass Generation
In this paper, fermions are minimally coupled to 3D-gravity where a dynamical
torsion is introduced. A Kalb-Ramond field is non-minimally coupled to these
fermions in a gauge-invariant way. We show that a 1-loop mass generation
mechanism takes place for both the 2-form gauge field and the torsion. As for
the fermions, no mass is dynamically generated: at 1-loop, there is only a mass
shift proportional to the Yukawa coupling whenever the fermions have a
non-vanishing tree-level mass.Comment: 13 pages, latex file, no figures, some corrections adde
- …