295 research outputs found

    Influence of Arctic Microlayers and Algal Cultures on Sea Spray Hygroscopicity and the Possible Implications for Mixed-Phase Clouds

    Get PDF
    As Arctic sea ice cover diminishes, sea spray aerosols (SSA) have a larger potential to be emitted into the Arctic atmosphere. Emitted SSA can contain organic material, but how it affects the ability of particles to act as cloud condensation nuclei (CCN) is still not well understood. Here we measure the CCN-derived hygroscopicity of three different types of aerosol particles: (1) Sea salt aerosols made from artificial seawater, (2) aerosol generated from artificial seawater spiked with diatom species cultured in the laboratory, and (3) aerosols made from samples of sea surface microlayer (SML) collected during field campaigns in the North Atlantic and Arctic Ocean. Samples are aerosolized using a sea spray simulation tank (plunging jet) or an atomizer. We show that SSA containing diatom and microlayer exhibit similar CCN activity to inorganic sea salt with a Îș value of ∌1.0. Large-eddy simulation (LES) is then used to evaluate the general role of aerosol hygroscopicity in governing mixed-phase low-level cloud properties in the high Arctic. For accumulation mode aerosol, the simulated mixed-phase cloud properties do not depend strongly on Îș, unless the values are lower than 0.4. For Aitken mode aerosol, the hygroscopicity is more important; the particles can sustain the cloud if the hygroscopicity is equal to or higher than 0.4, but not otherwise. The experimental and model results combined suggest that the internal mixing of biogenic organic components in SSA does not have a substantial impact on the cloud droplet activation process and the cloud lifetime in Arctic mixed-phase clouds

    Influence of Arctic Microlayers and Algal Cultures on Sea Spray Hygroscopicity and the Possible Implications for Mixed‐Phase Clouds

    Get PDF
    As Arctic sea ice cover diminishes, sea spray aerosols (SSA) have a larger potential to be emitted into the Arctic atmosphere. Emitted SSA can contain organic material, but how it affects the ability of particles to act as cloud condensation nuclei (CCN) is still not well understood. Here we measure the CCN‐derived hygroscopicity of three different types of aerosol particles: (1) Sea salt aerosols made from artificial seawater, (2) aerosol generated from artificial seawater spiked with diatom species cultured in the laboratory, and (3) aerosols made from samples of sea surface microlayer (SML) collected during field campaigns in the North Atlantic and Arctic Ocean. Samples are aerosolized using a sea spray simulation tank (plunging jet) or an atomizer. We show that SSA containing diatom and microlayer exhibit similar CCN activity to inorganic sea salt with a Îș value of ∌1.0. Large‐eddy simulation (LES) is then used to evaluate the general role of aerosol hygroscopicity in governing mixed‐phase low‐level cloud properties in the high Arctic. For accumulation mode aerosol, the simulated mixed‐phase cloud properties do not depend strongly on Îș, unless the values are lower than 0.4. For Aitken mode aerosol, the hygroscopicity is more important; the particles can sustain the cloud if the hygroscopicity is equal to or higher than 0.4, but not otherwise. The experimental and model results combined suggest that the internal mixing of biogenic organic components in SSA does not have a substantial impact on the cloud droplet activation process and the cloud lifetime in Arctic mixed‐phase clouds

    Effect of Aerosolization and Drying on the Viability of Pseudomonas syringae Cells

    Get PDF
    Airborne dispersal of microorganisms influences their biogeography, gene flow, atmospheric processes, human health and transmission of pathogens that affect humans, plants and animals. The extent of their impact depends essentially on cell-survival rates during the process of aerosolization. A central factor for cell-survival is water availability prior to and upon aerosolization. Also, the ability of cells to successfully cope with stress induced by drying determines their chances of survival. In this study, we used the ice-nucleation active, plant pathogenic Pseudomonas syringae strain R10.79 as a model organism to investigate the effect of drying on cell survival. Two forms of drying were simulated: drying of cells in small droplets aerosolized from a wet environment by bubble bursting and drying of cells in large droplets deposited on a surface. For drying of cells both in aerosol and surface droplets, the relative humidity (RH) was varied in the range between 10 and 90%. The fraction of surviving cells was determined by live/dead staining followed by flow cytometry. We also evaluated the effect of salt concentration in the water droplets on the survival of drying cells by varying the ionic strength between 0 and 700 mM using NaCl and sea salt. For both aerosol and surface drying, cell survival increased with decreasing RH (p < 0.01), and for surface drying, survival was correlated with increasing salt concentration (p < 0.001). Imaging cells with TEM showed shrunk cytoplasm and cell wall damage for a large fraction of aerosolized cells. Ultimately, we observed a 10-fold higher fraction of surviving cells when dried as aerosol compared to when dried on a surface. We conclude that the conditions, under which cells dry, significantly affect their survival and thus their success to spread through the atmosphere and colonize new environments as well as their ability to affect atmospheric processes

    The Aarhus Chamber Campaign on Highly Oxygenated Organic Molecules and Aerosols (ACCHA) : particle formation, organic acids, and dimer esters from alpha-pinene ozonolysis at different temperatures

    Get PDF
    Little is known about the effects of subzero temperatures on the formation of secondary organic aerosol (SOA) from alpha-pinene. In the current work, ozone-initiated oxidation of alpha-pinene at initial concentrations of 10 and 50 ppb, respectively, is performed at temperatures of 20, 0, and -15 degrees C in the Aarhus University Research on Aerosol (AURA) smog chamber during the Aarhus Chamber Campaign on Highly Oxygenated Organic Molecules and Aerosols (ACCHA). Herein, we show how temperature influences the formation and chemical composition of alpha-pinene-derived SOA with a specific focus on the formation of organic acids and dimer esters. With respect to particle formation, the results show significant increase in particle-formation rates, particle number concentrations, and particle mass concentrations at low temperatures. In particular, the number concentrations of sub-10 nm particles were significantly increased at the lower 0 and -15 degrees C temperatures. Temperature also affects the chemical composition of formed SOA. Here, detailed offline chemical analyses show that organic acids contribute from 15 % to 30 % by mass, with highest contributions observed at the lowest temperatures, indicative of enhanced condensation of these semivolatile species. In comparison, a total of 30 identified dimer esters were seen to contribute between 4 % and 11 % to the total SOA mass. No significant differences in the chemical composition (i.e. organic acids and dimer esters) of the alpha-pinene-derived SOA particles are observed between experiments performed at 10 and 50 ppb initial alpha-pinene concentrations, thus suggesting a higher influence of reaction temperature compared to that of alpha-pinene loading on the SOA chemical composition. Interestingly, the effect of temperature on the formation of dimer esters differs between the individual species. The formation of less oxidized dimer esters - with oxygento-carbon ratio (O : C) 0.4) is suppressed, consequently resulting in temperature-modulated composition of the a -pinene-derived SOA. Temperature ramping experiments exposing alpha-pinenederived SOA to changing temperatures (heating and cooling) reveal that the chemical composition of the SOA with respect to dimer esters is governed almost solely by the temperature at which oxidization started and is insusceptible to subsequent changes in temperature Similarly, the resulting SOA mass concentrations were found to be more influenced by the initial alpha-pinene oxidation temperatures, thus suggesting that the formation conditions to a large extent govern the type of SOA formed, rather than the conditions to which the SOA is later exposed. For the first time, we discuss the relation between the identified dimer ester and the highly oxygenated organic molecules (HOMs) measured by chemical ionization-atmospheric pressure interface-time-of-flight mass spectrometer (CI-APi-ToF) during the ACCHA experiments. We propose that, although very different in chemical structures and O : C ratios, many dimer esters and HOMs may be linked through similar RO2 reaction pathways and that dimer esters and HOMs merely represent two different fates of the RO2 radicals.Peer reviewe
    • 

    corecore