85 research outputs found

    Regulation of dissimilatory sulfur oxidation in the purple sulfur bacterium Allochromatium vinosum

    Get PDF
    In the purple sulfur bacterium Allochromatium vinosum, thiosulfate oxidation is strictly dependent on the presence of three periplasmic Sox proteins encoded by the soxBXAK and soxYZ genes. It is also well documented that proteins encoded in the dissimilatory sulfite reductase (dsr) operon, dsrABEFHCMKLJOPNRS, are essential for the oxidation of sulfur that is stored intracellularly as an obligatory intermediate during the oxidation of thiosulfate and sulfide. Until recently, detailed knowledge about the regulation of the sox genes was not available. We started to fill this gap and show that these genes are expressed on a low constitutive level in A. vinosum in the absence of reduced sulfur compounds. Thiosulfate and possibly sulfide lead to an induction of sox gene transcription. Additional translational regulation was not apparent. Regulation of soxXAK is probably performed by a two-component system consisting of a multi-sensor histidine kinase and a regulator with proposed di-guanylate cyclase activity. Previous work already provided some information about regulation of the dsr genes encoding the second important sulfur-oxidizing enzyme system in the purple sulfur bacterium. The expression of most dsr genes was found to be at a low basal level in the absence of reduced sulfur compounds and enhanced in the presence of sulfide. In the present work, we focused on the role of DsrS, a protein encoded by the last gene of the dsr locus in A. vinosum. Transcriptional and translational gene fusion experiments suggest a participation of DsrS in the post-transcriptional control of the dsr operon. Characterization of an A. vinosum ΔdsrS mutant showed that the monomeric cytoplasmic 41.1-kDa protein DsrS is important though not essential for the oxidation of sulfur stored in the intracellular sulfur globules

    Sulfite: Cytochrome \u3cem\u3ec\u3c/em\u3e Oxidoreductase from \u3cem\u3eThiobacillus novellus\u3c/em\u3e

    Get PDF
    Direct oxidation of sulfite to sulfate occurs in various photo- and chemotrophic sulfur oxidizing microorganisms as the final step in the oxidation of reduced sulfur compounds and is catalyzed by sulfite:cytochrome c oxidoreductase (EC1.8.2.1). Here we show that the enzyme from Thiobacillus novellus is a periplasmically located αβ heterodimer, consisting of a 40.6-kDa subunit containing a molybdenum cofactor and an 8.8-kDa mono-heme cytochrome c 552 subunit (midpoint redox potential, E m8.0 = +280 mV). The organic component of the molybdenum cofactor was identified as molybdopterin contained in a 1:1 ratio to the Mo content of the enzyme. Electron paramagnetic resonance spectroscopy revealed the presence of a sulfite-inducible Mo(V) signal characteristic of sulfite:acceptor oxidoreductases. However, pH-dependent changes in the electron paramagnetic resonance signal were not detected. Kinetic studies showed that the enzyme exhibits a ping-pong mechanism involving two reactive sites. K m values for sulfite and cytochrome c 550 were determined to be 27 and 4 μm, respectively; the enzyme was found to be reversibly inhibited by sulfate and various buffer ions. The sorABgenes, which encode the enzyme, appear to form an operon, which is preceded by a putative extracytoplasmic function-type promoter and contains a hairpin loop termination structure downstream ofsorB. While SorA exhibits significant similarities to known sequences of eukaryotic and bacterial sulfite:acceptor oxidoreductases, SorB does not appear to be closely related to any knownc-type cytochromes

    Interaction between Sox proteins of two physiologically distinct bacteria and a new protein involved in thiosulfate oxidation

    Get PDF
    AbstractOrganisms using the thiosulfate-oxidizing Sox enzyme system fall into two groups: group 1 forms sulfur globules as intermediates (Allochromatium vinosum), group 2 does not (Paracoccus pantotrophus). While several components of their Sox systems are quite similar, i.e. the proteins SoxXA, SoxYZ and SoxB, they differ by Sox(CD)2 which is absent in sulfur globule-forming organisms. Still, the respective enzymes are partly exchangeable in vitro: P. pantotrophus Sox enzymes work productively with A. vinosum SoxYZ whereas A. vinosum SoxB does not cooperate with the P. pantotrophus enzymes. Furthermore, A. vinosum SoxL, a rhodanese-like protein encoded immediately downstream of soxXAK, appears to play an important role in recycling SoxYZ as it increases thiosulfate depletion velocity in vitro without increasing the electron yield

    Heme ligation and redox chemistry in two bacterial thiosulfate dehydrogenase (TsdA) enzyme

    Get PDF
    Thiosulfate dehydrogenases (TsdA) are bidirectional bacterial di-heme enzymes that catalyze the interconversion of tetrathionate and thiosulfate at measurable rates in both directions. In contrast to our knowledge of TsdA activities, information on the redox properties in the absence of substrates is rather scant. To address this deficit, we combined magnetic circular dichroism (MCD) spectroscopy and protein film electrochemistry (PFE) in a study to resolve heme ligation and redox chemistry in two representative TsdAs. We examined the TsdAs from Campylobacter jejuni, a micro-aerobe human pathogen, and from the purple sulfur bacterium Allochromatium vinosum. In these organisms, the enzyme functions as a tetrathionate reductase and a thiosulfate oxidase respectively. The active site Heme 1 in both enzymes has His/Cys− ligation in the ferric and ferrous states and the midpoint potentials (Em) of the corresponding redox transformations are similar, −185 mV versus standard hydrogen electrode (SHE). However, fundamental differences are observed in the properties of the second, electron transferring, Heme 2. In C. jejuni TsdA Heme 2 has His/Met ligation and an Em of +172 mV. In A. vinosum TsdA, Heme 2 reduction triggers a switch from His/Lys ligation (Em, −129 mV) to His/Met (Em,+266 mV) but the rates of interconversion are such that His/Lys ligation would be retained during turnover. In summary, our findings have unambiguously assigned Em values to defined axial ligand sets in TsdAs, specified the rates of Heme 2 ligand exchange in the A. vinosum enzyme, and provided information relevant to describing their catalytic mechanism(s)

    Structural and spectroscopic characterization of a HdrA-like subunit from Hyphomicrobium denitrificans

    Get PDF
    Funding Information: We thank Laurenz Heidrich for help with statistical analyses. This work was supported by grant Da 351/8‐1 (to CD) from the Deutsche Forschungsgemeinschaft and Fundação para a Ciência e Tecnologia (Portugal) (grant PTDC/BIA‐BQM/29118 and R&D units MOSTMICRO‐ITQB (UIDB/04612/2020 and UIDP/04612/2020), and European Union's Horizon 2020 research and innovation program (grant agreement No 810856). Open access funding enabled and organized by Projekt DEAL. Publisher Copyright: © 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies Copyright: Copyright 2021 Elsevier B.V., All rights reserved.Many bacteria and archaea employ a novel pathway of sulfur oxidation involving an enzyme complex that is related to the heterodisulfide reductase (Hdr or HdrABC) of methanogens. As a first step in the biochemical characterization of Hdr-like proteins from sulfur oxidizers (sHdr), we structurally analyzed the recombinant sHdrA protein from the Alphaproteobacterium Hyphomicrobium denitrificans at 1.4 Å resolution. The sHdrA core structure is similar to that of methanogenic HdrA (mHdrA) which binds the electron-bifurcating flavin adenine dinucleotide (FAD), the heart of the HdrABC-[NiFe]-hydrogenase catalyzed reaction. Each sHdrA homodimer carries two FADs and two [4Fe–4S] clusters being linked by electron conductivity. Redox titrations monitored by electron paramagnetic resonance and visible spectroscopy revealed a redox potential between −203 and −188 mV for the [4Fe–4S] center. The potentials for the FADH•/FADH− and FAD/FADH• pairs reside between −174 and −156 mV and between −81 and −19 mV, respectively. The resulting stable semiquinone FADH• species already detectable in the visible and electron paramagnetic resonance spectra of the as-isolated state of sHdrA is incompatible with basic principles of flavin-based electron bifurcation such that the sHdr complex does not apply this new mode of energy coupling. The inverted one-electron FAD redox potentials of sHdr and mHdr are clearly reflected in the different FAD-polypeptide interactions. According to this finding and the assumption that the sHdr complex forms an asymmetric HdrAA′B1C1B2C2 hexamer, we tentatively propose a mechanism that links protein-bound sulfane oxidation to sulfite on HdrB1 with NAD+ reduction via lipoamide disulfide reduction on HdrB2. The FAD of HdrA thereby serves as an electron storage unit. Database: Structural data are available in PDB database under the accession number 6TJR.publishe

    Complete genome sequence of Allochromatium vinosum DSM 180T

    Get PDF
    Allochromatium vinosum formerly Chromatium vinosum is a mesophilic purple sulfur bacterium belonging to the family Chromatiaceae in the bacterial class Gammaproteobacteria. The genus Allochromatium contains currently five species. All members were isolated from freshwater, brackish water or marine habitats and are predominately obligate phototrophs. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the Chromatiaceae within the purple sulfur bacteria thriving in globally occurring habitats. The 3,669,074 bp genome with its 3,302 protein-coding and 64 RNA genes was sequenced within the Joint Genome Institute Community Sequencing Program

    Influence of haem environment on the catalytic properties of the tetrathionate reductase TsdA from Campylobacter jejuni

    Get PDF
    Bifunctional diheme cytochrome c thiosul­fate dehydrogenases/tetrathionate reductases (TsdA) exhibit different catalytic properties depend­ing on the source organism. In the human food-borne intestinal pathogen Campylobacter jejuni , TsdA functions as a tetrathionate reductase en­abling respiration with tetrathionate as an al­ternative electron acceptor. Here, evidence is provided that Cys138 and Met255 serve as the sixth ligands of Heme 1 and Heme 2, respec­tively, in the oxidized Cj TsdA wt protein. Re­placement of Cys138 resulted in a virtually inac­tive enzyme, confirming Heme 1 as the active site heme. Significantly, TsdA variants carrying amino acid exchanges in the vicinity of the elec­tron-transferring Heme 2 (Met255, Asn254 and Lys252) exhibited markedly altered catalytic properties of the enzyme, showing these residues play a key role in the physiological function of TsdA. The growth phenotypes and tetrathionate reductase activities of a series of Δ tsdA/*tsdA complemen­tation strains constructed in the original host C. jejuni 81116, showed that in vivo , the TsdA variants exhibited the same catalytic properties as the pure, recombinantly produced enzymes. However, variants that catalyzed tetrathionate reduction more effectively than the wild-type enzyme did not allow better growth

    Characteristics Associated with Serological Covid-19 Vaccine Response and Durability in an Older Population with Significant Comorbidity:The Danish Nationwide ENFORCE Study

    Get PDF
    OBJECTIVES: To identify individual characteristics associated with serological COVID-19 vaccine responsiveness and durability of vaccine-induced antibodies. METHODS: Adults without history of SARS-CoV-2 infection from the Danish population scheduled for SARS-CoV-2 vaccination were enrolled in this parallel group, phase IV study. SARS-CoV-2 Spike IgG and Spike-ACE2-receptor-blocking antibodies were measured at days 0, 21, 90 and 180. Vaccine responsiveness was categorized according to Spike IgG and Spike-ACE2-receptor-blocking levels at day 90 post-1(st) vaccination. Non-durable vaccine-response was defined as day 90 responders that no longer had significant responses by day 180. RESULTS: Of 6544 participants completing two vaccine doses (median age 64, interquartile range:54–75), 3654 (55.8%) received BTN162b2, 2472 (37.8%) mRNA-1273, and 418 (6.4%) ChAdOx1 followed by a mRNA vaccine. Levels of both types of antibodies increased from baseline to day 90 and then decreased to day 180. The decrease was more pronounced for levels of Spike-ACE2-receptor-blocking antibodies than for Spike IgG. Proportions with vaccine hypo-responsiveness and lack of durable response were 5.0% and 12.1% for Spike IgG; 12.7% and 39.6% for Spike-ACE2-receptor-blocking antibody levels, respectively. Male sex, vaccine type and number of co-morbidities were associated with all four outcomes. Additionally, age >=75y was associated with hypo-responsiveness for Spike-ACE2-receptor-blocking antibodies (adjusted odds-ratio:1.59, 95% confidence interval:1.25–2.01) but not for Spike IgG. CONCLUSIONS: Comorbidity, male sex and vaccine type were risk factors for hypo-responsiveness and non-durable response to COVID-19 vaccination. The functional activity of vaccine-induced antibodies declined with increasing age and had waned to pre-2(nd) vaccination levels for most individuals after 6 months

    Y-box protein-1/p18 fragment identifies malignancies in patients with chronic liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immunohistochemical detection of cold shock proteins is predictive for deleterious outcome in various malignant diseases. We recently described active secretion of a family member, denoted Y-box (YB) protein-1. We tested the clinical and diagnostic value of YB-1 protein fragment p18 (YB-1/p18) detection in blood for malignant diseases.</p> <p>Methods</p> <p>We used a novel monoclonal anti-YB-1 antibody to detect YB-1/p18 by immunoblotting in plasma samples of healthy volunteers (n = 33), patients with non-cancerous, mostly inflammatory diseases (n = 60), hepatocellular carcinoma (HCC; n = 25) and advanced solid tumors (n = 20). YB-1/p18 was then tested in 111 patients with chronic liver diseases, alongside established tumor markers and various diagnostic measures, during evaluation for potential liver transplantation.</p> <p>Results</p> <p>We developed a novel immunoblot to detect the 18 kD fragment of secreted YB-1 in human plasma (YB-1/p18) that contains the cold-shock domains (CSD) 1-3 of the full-length protein. YB-1/p18 was detected in 11/25 HCC and 16/20 advanced carcinomas compared to 0/33 healthy volunteers and 10/60 patients with non-cancerous diseases. In 111 patients with chronic liver disease, YB-1/p18 was detected in 20 samples. Its occurrence was not associated with advanced Child stages of liver cirrhosis or liver function. In this cohort, YB-1/p18 was not a good marker for HCC, but proved most powerful in detecting malignancies other than HCC (60% positive) with a lower rate of false-positive results compared to established tumor markers. Alpha-fetoprotein (AFP) was most sensitive in detecting HCC, but simultaneous assessment of AFP, CA19-9 and YB-1/p18 improved overall identification of HCC patients.</p> <p>Conclusions</p> <p>Plasma YB-1/p18 can identify patients with malignancies, independent of acute inflammation, renal impairment or liver dysfunction. The detection of YB-1/p18 in human plasma may have potential as a tumor marker for screening of high-risk populations, e.g. before organ transplantation, and should therefore be evaluated in larger prospective studies.</p
    corecore