17 research outputs found

    Clinical and metabolic characteristics of treated hyperlipidemic patients additionally affected by subclinical hyperglycemia

    Get PDF
    Background Impaired glucose regulation (IGR) and hyperlipidemia (HL) are associated with an increased risk of developing a cardiovascular disease. Hyperlipidemic patients were shown to bear a greater risk for an increased intima media thickness (IMT). However little is known about differences between treated hyperlipidemic patients (HL) with normal (NGR) or impaired (IGR) glucose regulation. Methods We performed a cross-sectional study, involving 96 non-diabetic HL patients with IGR (fasting plasma glucose of 100 mg/dl and <126 mg/dl or/and HbA1c-level of 5.7 and <6.5 %) or with NGR (HbA1c-level of <5.7 % and a fasting glucose <100 mg/dl). We compared metabolic characteristics and the IMT between the two groups. Insulin sensitivity in fasting conditions was described by HOMA-IR and QUICKI. Results HL-IGR patients were older (57.6 10.4 vs. 49.1 8.7, p < 0.001), had higher carotid IMT measurements (IMT average: 0.68 0.14 vs. 0.60 0.09, p = 0.002; IMT right: 0.67 0.15 vs. 0.60 0.10, p = 0.013; IMT left: 0.63 vs. 0.57, p = 0.009), as well as a higher chance to exceed a cut-off value of 0.8 mm or insignificant stenosis within this investigation (OR: 3.9, 95 % CI: 1.15-13.22, p = 0.029) compared to HL-NGR-patients. Furthermore HL-IGR patients were characterised by a higher waist circumference (100.6 10.1 vs. 91.6 13.3, p < 0.001), higher fasting plasma glucose-levels (100.1 10.8 vs. 88.1 6.6, p < 0.001), higher HbA1c concentrations (5.8 0.33 vs. 5.3 0.24, p < 0.001) and C-peptide levels (2.70 vs. 2.10, p = 0.012). Age and CVD status were in general the only two variables which independently explained IMT. Conclusion Our study showed that among patients with treated hyperlipidemia the presence of IGR characterised subjects who were older and had a significantly higher risk for an increased IMT compared with those maintaining NGR. Further studies are necessary to evaluate if this specific subpopulation with IGR can benefit from a more strict multifactorial management and perhaps from an additional early antihyperglycaemic treatment.(VLID)511297

    Cardiometabolic Risk in Hyperlipidemic Men and Women

    Get PDF
    Objective. The aim of this study was to evaluate sex specific differences of metabolic and clinical characteristics of treated hyperlipidemic men and women (HL-men and HL-women). Methods. In this study vascular and metabolic characteristics of 35 HL-women and 64 HL-men were assessed. In addition a sex specific analysis of metabolic and nutritional habits of HL-patients with prediabetes (HL-IGR) was done. Results. HL-women were older and had favourable concentrations of high density lipoprotein cholesterol (HDL-cholesterol), triglycerides (TG), and triglyceride/HDL-cholesterol ratio (TG/HDL-ratio) but were also shown to have higher concentrations of lipoprotein-a compared to HL-men. HL-men were characterized as having higher levels of liver-specific parameters and body weight as well as being more physically active compared to HL-women. Brain natriuretic peptide (pro-BNP) was higher in HL-women than HL-men, while no differences in metabolic syndrome and glycemic parameters were shown. HL-IGR-women were also older and still had a better profile of sex specific lipid parameters, as well as a lower body weight compared to HL-IGR-men. No differences were seen in vascular parameters such as the intima media thickness (IMT). Conclusion. HL-women were older and had overall more favourable concentrations of lipid parameters and liver enzymes but did not differ regarding vascular morphology and insulin sensitivity compared to HL-men of comparable body mass index (BMI)

    A leucine aminopeptidase is involved in kinetoplast DNA segregation in <i>Trypanosoma brucei</i>

    Get PDF
    The kinetoplast (k), the uniquely packaged mitochondrial DNA of trypanosomatid protists is formed by a catenated network of minicircles and maxicircles that divide and segregate once each cell cycle. Although many proteins involved in kDNA replication and segregation are now known, several key steps in the replication mechanism remain uncharacterized at the molecular level, one of which is the nabelschnur or umbilicus, a prominent structure which in the mammalian parasite Trypanosoma brucei connects the daughter kDNA networks prior to their segregation. Here we characterize an M17 family leucyl aminopeptidase metalloprotease, termed TbLAP1, which specifically localizes to the kDNA disk and the nabelschur and represents the first described protein found in this structure. We show that TbLAP1 is required for correct segregation of kDNA, with knockdown resulting in delayed cytokinesis and ectopic expression leading to kDNA loss and decreased cell proliferation. We propose that TbLAP1 is required for efficient kDNA division and specifically participates in the separation of daughter kDNA networks

    The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics.

    Get PDF
    ABSTRACT: A global genome database of all of Earth’s species diversity could be a treasure trove of scientific discoveries. However, regardless of the major advances in genome sequencing technologies, only a tiny fraction of species have genomic information available. To contribute to a more complete planetary genomic database, scientists and institutions across the world have united under the Earth BioGenome Project (EBP), which plans to sequence and assemble high-quality reference genomes for all ∼1.5 million recognized eukaryotic species through a stepwise phased approach. As the initiative transitions into Phase II, where 150,000 species are to be sequenced in just four years, worldwide participation in the project will be fundamental to success. As the European node of the EBP, the European Reference Genome Atlas (ERGA) seeks to implement a new decentralised, accessible, equitable and inclusive model for producing high-quality reference genomes, which will inform EBP as it scales. To embark on this mission, ERGA launched a Pilot Project to establish a network across Europe to develop and test the first infrastructure of its kind for the coordinated and distributed reference genome production on 98 European eukaryotic species from sample providers across 33 European countries. Here we outline the process and challenges faced during the development of a pilot infrastructure for the production of reference genome resources, and explore the effectiveness of this approach in terms of high-quality reference genome production, considering also equity and inclusion. The outcomes and lessons learned during this pilot provide a solid foundation for ERGA while offering key learnings to other transnational and national genomic resource projects.info:eu-repo/semantics/publishedVersio

    Characterization of Leucine aminopeptidase 1 in Trypanosoma brucei

    No full text
    In this work, Leucine aminopeptidase 1 in procyclic Trypanosoma brucei is localized, down- regulated by RNAi, and ectopically expressed with a concomitant growth phenotype, a disruption in cell cycle and mitochondrial membrane potential, which denotes a role in kinetoplastic DNA segregation

    Characterization of procyclic <i>T</i>. <i>brucei</i> expressing ectopically TbLAP1-HA.

    No full text
    <p>(A) Growth of trypanosomes in SDM-79 in the presence (dotted line) and absence (continuous line) of tetracycline (Tet). (B) DAPI counts in induced cells with Tet for ectopic expression of TbLAP1-HA. Two hundred cells per time point were counted and used for the analysis. (C) Western blot analysis of ectopically expressed TbLAP1-HA using monoclonal anti-tubulin antibody as a loading control. 5 x 10<sup>6</sup> cells per sample were loaded per well. (D) Mitochondrial membrane potential measurement using TMRE of uninduced (black line) and induced (red line) cells expressing TbLAP1-HA (2, 6, 24, 72 and 96 hrs of induction). The measurement is a representative of an assay performed in three independent experiments.</p

    Immunolocalization of <i>in situ</i> tagged TbLAP1-V5 protein by cryo-transmission electron microscopy.

    No full text
    <p>Representative kDNA disks displaying distributions of gold nanoparticles either in clusters (A, B) or with random distribution (C,D), as evaluated by Ripley’s function. f1, f2 –basal bodies of the dividing flagella. Scale bars: 200 nm. (n = 342, <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1006310#ppat.1006310.s009" target="_blank">S1 Table</a>)</p

    A model for the mutual relationships between the basal body, tripartite attachment complex and kDNA.

    No full text
    <p>Basal body (yellow), flagellum (black line), tripartite attachment complex (TAC) (red), kDNA and nucleus (blue), and TbLAP1 (green) are depicted during the cell cycle of procyclic <i>T</i>. <i>brucei</i>. (A) 1N1K interphase cells bearing one basal body, a flagellum and a single TAC connected with kDNA and TbLAP1. (B) Cells in the earliest stages of division, with basal and pro-basal bodies divided and started to segregate, and TAC division commenced; the growth of the new flagellum becomes evident; kDNA displays an elongated “dumbbell” shape, which reflects its replication; TbLAP1 co-localizes with kDNA. (C) Later stage where kDNA replication is complete and the progeny kDNA networks have divided and appear in a perpendicular position to one another; TbLAP1 is present in the progeny kDNAs and in the nabelschnur; basal and pro-basal bodies proceed with their segregation. (D) Later still, segregation of the newly divided kDNAs continues, together with respective TAC and basal bodies; the nabelschnur begins to fade. (E) Following nuclear DNA replication and segregation, newly divided nuclei appear, as the segregation of kDNA continues. (F) 2K2N cells just prior to cytokinesis, with nuclei completely divided with kDNA and associated structures aligned for the upcoming cell division.</p

    Immunofluorescence of cells ectopically expressing the TbLAP1-HA protein, double labeled with polyclonal anti-HA (green) and anti-TAC102 antibodies (red).

    No full text
    <p>The latter antibody visualizes the dynamics of the tripartite attachment complex (TAC). DAPI (blue) shows the location of the nucleus and kDNA; arrowheads and asterisks denote aberrant kDNA. Squares denote area displayed as zoom. B) After 2 hrs (A) and 6 hrs of ectopic expression of TbLAP1-HA (B), the apparition of 1K2Ndiv cells (not yet segregated cells with kDNA in division) became evident as depicted by two cells failing to segregate their already divided kDNAs; note the structure of the nabelschnur holding the kDNAs and TAC together at the posterior end of the cell. Division of TAC and nucleus occurred, as shown by two TAC102 signals and two nuclei, without prior segregation of the TAC structures and the kDNAs, which remained at the posterior end of the cell (C). Representative cell displaying accumulation of TbLAP1-HA around aberrantly sized kDNAs (D). Scale bars: 1 μm.</p

    Immunofluorescence assay of cells expressing <i>in situ</i>-tagged TbLAP1-V5.

    No full text
    <p>Cells were double-labeled with polyclonal anti-V5 (green) and YL1/2 (red) antibodies. DAPI (blue) shows the location of the nucleus and kDNA. Zoom shows enlargement of kDNA and associated region from merge. TbLAP1 (detected with anti-V5 antibody) co-localizes with kDNA, which is positioned next to the basal body (A). TbLAP1 forms two foci overlapping with the dividing kDNA; the basal body has also divided (B). As kDNA begins segregation, the signal of the TbLAP1 arranges in a bi-lobular, dumbbell-like structure (C). The nabelschnur becomes apparent at the start of progeny kDNA segregation (D). At an advanced stage of kDNA segregation, the nabelschnur begins to fade, with only a small accumulation of TbLAP1 evident in the center of the fading link (E). Once the kDNAs have segregated, the nabelschnur completely disappears and the TbLAP1 signal remains localized exclusively to the kDNA disks, with the basal body juxtaposed next to it (F). Scale bars: 1 μm.</p
    corecore