942 research outputs found

    spotlight europe #2015/02—July 2015: A Gulf CSC Could Bring Peace and Greater Security to the Middle East

    Get PDF
    Wars continue to ravage in Syria, Iraq and Yemen. Refugees are wandering around aimlessly in the Middle East with many fleeing to Europe. Saudi Arabia and Iran are adding fuel to the flames. They are vying for supremacy while remaining highly suspicious of each other. A Conference for Security and Cooperation could help to ease existing tensions. Many years ago the CSCE was a resounding success. It could thus serve as a blueprint with the nuclear agreement with Iran as a starting point of such a venture

    The winner’s curse: conditional reasoning & belief formation

    Get PDF
    We investigate the relevance of conditional reasoning and belief formation for the occurrence of the winner’s curse with the help of two experimental manipulations. First, we compare results from a very simple common-value auction game with results from a transformed version of this game that does not require any conditioning on future events. In human opponent settings, we observe significant differences in behavior across the two games. Second, we investigate subjects’ behavior when they face naïve computerized opponents and after they have faced them. We find that both strong and weak assistance in belief formation changes subjects’ play significantly in the auction game. Overall, the results suggest that the difficulty of conditioning on future events is at least as important in explaining frequent occurrences of the winner’s curse as is the challenge to form beliefs

    SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound

    Get PDF
    Identifying and interpreting fetal standard scan planes during 2D ultrasound mid-pregnancy examinations are highly complex tasks which require years of training. Apart from guiding the probe to the correct location, it can be equally difficult for a non-expert to identify relevant structures within the image. Automatic image processing can provide tools to help experienced as well as inexperienced operators with these tasks. In this paper, we propose a novel method based on convolutional neural networks which can automatically detect 13 fetal standard views in freehand 2D ultrasound data as well as provide a localisation of the fetal structures via a bounding box. An important contribution is that the network learns to localise the target anatomy using weak supervision based on image-level labels only. The network architecture is designed to operate in real-time while providing optimal output for the localisation task. We present results for real-time annotation, retrospective frame retrieval from saved videos, and localisation on a very large and challenging dataset consisting of images and video recordings of full clinical anomaly screenings. We found that the proposed method achieved an average F1-score of 0.798 in a realistic classification experiment modelling real-time detection, and obtained a 90.09% accuracy for retrospective frame retrieval. Moreover, an accuracy of 77.8% was achieved on the localisation task.Comment: 12 pages, 8 figures, published in IEEE Transactions in Medical Imagin

    Separate and overlapping functional roles for efference copies in the human thalamus.

    Get PDF
    Abstract How the perception of space is generated from the multiple maps in the brain is still an unsolved mystery in neuroscience. A neural pathway ascending from the superior colliculus through the medio-dorsal (MD) nucleus of thalamus to the frontal eye field has been identified in monkeys that conveys efference copy information about the metrics of upcoming eye movements. Information sent through this pathway stabilizes vision across saccades. We investigated whether this motor plan information might also shape spatial perception even when no saccades are performed. We studied patients with medial or lateral thalamic lesions (likely involving either the MD or the ventrolateral (VL) nuclei). Patients performed a double-step task testing motor updating, a trans-saccadic localization task testing visual updating, and a localization task during fixation testing a general role of motor signals for visual space in the absence of eye movements. Single patients with medial or lateral thalamic lesions showed deficits in the double-step task, reflecting insufficient transfer of efference copy. However, only a patient with a medial lesion showed impaired performance in the trans-saccadic localization task, suggesting that different types of efference copies contribute to motor and visual updating. During fixation, the MD patient localized stationary stimuli more accurately than healthy controls, suggesting that patients compensate the deficit in visual prediction of saccades - induced by the thalamic lesion - by relying on stationary visual references. We conclude that partially separable efference copy signals contribute to motor and visual stability in company of purely visual signals that are equally effective in supporting trans-saccadic perception

    Selective purification of catecholate, hydroxamate and α-hydroxycarboxylate siderophores with titanium dioxide affinity chromatography

    Get PDF
    Siderophores, high affinity iron chelators, play a key role in the uptake of iron by microorganisms and regulate many biological functions. Siderophores are categorized by their chelating group, e.g., catecholates, hydroxamates, α-hydroxycarboxylates. Natural concentrations of siderophores are often either too low or sample matrices are too complex for direct analysis by, e.g., liquid chromatography – mass spectrometry. Therefore, both concentration and purification are prerequisite for reliable analyses. However, a chromatographic technique that is selective for all siderophore classes and affords high levels of purification is lacking. We developed a titanium dioxide affinity chromatography (TDAC) solid-phase extraction (SPE) that affords the selective purification of these siderophore classes from complex sample matrices with recoveries up to 82%. The one-step purification removed most non-ligand sample ‘contaminants’, therefore, affording the straightforward identification of siderophore peaks in base peak chromatograms. As a proof of concept, the bioinformatic processing, dereplication of known features and selection of significant features in the TDAC eluates afforded a fast identification of six novel siderophores (woodybactines) from bacterial supernatants. We propose TDAC SPE as a fast and cost-effective methodology to screen for known or discover novel siderophores in natural samples in combination with untargeted bioinformatic processing by, e.g., XCMS. The method is scalable and yielded large amounts of highly purified siderophores from bacterial culture supernatants, providing an effective quantitative sample clean-up for, e.g., NMR structure elucidation

    Spatial Patterns and Sequential Sampling Plans for Estimating Densities of Stink Bugs (Hemiptera: Pentatomidae) in Soybean in the North Central Region of the United States

    Get PDF
    Stink bugs are an emerging threat to soybean (Fabales: Fabaceae) in the North Central Region of the United States. Consequently, region-specific scouting recommendations for stink bugs are needed. The aim of this study was to characterize the spatial pattern and to develop sampling plans to estimate stink bug population density in soybean fields. In 2016 and 2017, 125 fields distributed across nine states were sampled using sweep nets. Regression analyses were used to determine the effects of stink bug species [Chinavia hilaris (Say) (Hemiptera: Pentatomidae) and Euschistus spp. (Hemiptera: Pentatomidae)], life stages (nymphs and adults), and field locations (edge and interior) on spatial pattern as represented by variance–mean relationships. Results showed that stink bugs were aggregated. Sequential sampling plans were developed for each combination of species, life stage, and location and for all the data combined. Results for required sample size showed that an average of 40–42 sample units (sets of 25 sweeps) would be necessary to achieve a precision of 0.25 for stink bug densities commonly encountered across the region. However, based on the observed geographic gradient of stink bug densities, more practical sample sizes (5–10 sample units) may be sufficient in states in the southeastern part of the region, whereas impractical sample sizes (\u3e100 sample units) may be required in the northwestern part of the region. Our findings provide research-based sampling recommendations for estimating densities of these emerging pests in soybean

    ULTRAMASSEXPLORER: A BROWSER-BASED APPLICATION FOR THE EVALUATION OF HIGH RESOLUTION MASS SPECTROMETRIC DATA

    Get PDF
    In the evaluation of high-resolution mass spectrometric data a considerable amount of time and computational power can be spent on matching molecular formulas to the neutral mass of measured ions. During the evaluation of multiple samples using the classical combinatory approach based on molecular building blocks and nested loops, the time consuming step of calculating the molecular mass may be repeated for the same molecular formula multiple times. To avoid repetitive calculations, we implemented a formula library based search approach into our data evaluation pipeline. In our approach, the step of calculating molecular formulas and corresponding masses is limited to the process of building a library. The library calculation requires an a priori definition of the maximum molecular mass and the isotopes contained, e.g. formulas in the mass range of ≤ 650 Da consisting of 12C, 1H, 14N, 16O, 31P, 32S, 13C, and 34S. The subsequent matching process is based on scrolling through a mass-sorted formula library and comparison with a mass-sorted list of measured peaks. The time required for processing is primarily a function of the size of the formula library. Consequently, at constant library size, the matching algorithm becomes more efficient with increasing number of supplied peaks (up to 4700 formula assignments s-1 on a standard workstation) and is thus particularly suited for processing large datasets. We implemented the matching algorithm into our R Shiny based interactive, evaluation software UltraMassExplorer (UME). In combination with the graphical user interface of UME, our algorithm provides the basis for fast and reproducible (re-)analysis of complete sample sets with currently up to 400,000 peaks in a user friendly, integrated environment. The code of our open-source algorithm is available through the UME website [1]. References [1] www.awi.de/en/um

    Technical Developments and Ex Vivo Demonstration in a Mouse Model of Neuroinflammation

    Get PDF
    Neuroinflammation can be monitored using fluorine-19 (19F)-containing nanoparticles and 19F MRI. Previously we studied neuroinflammation in experimental autoimmune encephalomyelitis (EAE) using room temperature (RT) 19F radiofrequency (RF) coils and low spatial resolution 19F MRI to overcome constraints in signal-to-noise ratio (SNR). This yielded an approximate localization of inflammatory lesions. Here we used a new 19F transceive cryogenic quadrature RF probe (19F-CRP) that provides the SNR necessary to acquire superior spatially-resolved 19F MRI. First we characterized the signal-transmission profile of the 19F-CRP. The 19F-CRP was then benchmarked against a RT 19F/1H RF coil. For SNR comparison we used reference compounds including 19F-nanoparticles and ex vivo brains from EAE mice administered with 19F-nanoparticles. The transmit/receive profile of the 19F-CRP diminished with increasing distance from the surface. This was counterbalanced by a substantial SNR gain compared to the RT coil. Intraparenchymal inflammation in the ex vivo EAE brains was more sharply defined when using 150 μm isotropic resolution with the 19F-CRP, and reflected the known distribution of EAE histopathology. At this spatial resolution, most 19F signals were undetectable using the RT coil. The 19F-CRP is a valuable tool that will allow us to study neuroinflammation with greater detail in future in vivo studies

    Scattering theory for Klein-Gordon equations with non-positive energy

    Full text link
    We study the scattering theory for charged Klein-Gordon equations: \{{array}{l} (\p_{t}- \i v(x))^{2}\phi(t,x) \epsilon^{2}(x, D_{x})\phi(t,x)=0,[2mm] \phi(0, x)= f_{0}, [2mm] \i^{-1} \p_{t}\phi(0, x)= f_{1}, {array}. where: \epsilon^{2}(x, D_{x})= \sum_{1\leq j, k\leq n}(\p_{x_{j}} \i b_{j}(x))A^{jk}(x)(\p_{x_{k}} \i b_{k}(x))+ m^{2}(x), describing a Klein-Gordon field minimally coupled to an external electromagnetic field described by the electric potential v(x)v(x) and magnetic potential b(x)\vec{b}(x). The flow of the Klein-Gordon equation preserves the energy: h[f, f]:= \int_{\rr^{n}}\bar{f}_{1}(x) f_{1}(x)+ \bar{f}_{0}(x)\epsilon^{2}(x, D_{x})f_{0}(x) - \bar{f}_{0}(x) v^{2}(x) f_{0}(x) \d x. We consider the situation when the energy is not positive. In this case the flow cannot be written as a unitary group on a Hilbert space, and the Klein-Gordon equation may have complex eigenfrequencies. Using the theory of definitizable operators on Krein spaces and time-dependent methods, we prove the existence and completeness of wave operators, both in the short- and long-range cases. The range of the wave operators are characterized in terms of the spectral theory of the generator, as in the usual Hilbert space case
    corecore