47 research outputs found

    Epigenetics in SLE

    Get PDF

    The molecular pathophysiology of chronic non-bacterial osteomyelitis (CNO)-a systematic review.

    Get PDF
    Chronic non-bacterial osteomyelitis (CNO) belongs to the growing spectrum of autoinflammatory diseases and primarily affects the skeletal system. Peak onset ranges between 7 and 12 years of age. The clinical spectrum of CNO covers sometimes asymptomatic inflammation of single bones at the one end and chronically active or recurrent multifocal osteitis at the other.Despite the intense scientific efforts, the exact molecular mechanisms of CNO remain unknown. Recent data suggest CNO as a genetically complex disorder with dysregulated TLR4/MAPK/inflammasome signaling cascades resulting in an imbalance between pro- and anti-inflammatory cytokine expression, leading to osteoclast activation and osteolytic lesions.In this manuscript, the current understanding of molecular patho-mechanisms in CNO will be discussed

    CASP1 variants influence subcellular caspase-1 localization, pyroptosome formation, pro-inflammatory cell death and macrophage deformability

    Get PDF
    CASP1 variants result in reduced enzymatic activity of procaspase-1 and impaired IL-1ÎČ release. Despite this, affected individuals can develop systemic autoinflammatory disease. These seemingly contradictory observations have only partially been explained by increased NF-ÎșB activation through prolonged interaction of variant procaspase-1 with RIP2. To identify further disease underlying pathomechanisms, we established an in vitro model using shRNA-directed knock-down of procaspase-1 followed by viral transduction of human monocytes (THP-1) with plasmids encoding for wild-type procaspase-1, disease-associated CASP1 variants (p.L265S, p.R240Q) or a missense mutation in the active center of procaspase-1 (p.C285A). THP1-derived macrophages carrying CASP1 variants exhibited mutation-specific molecular alterations. We here provide in vitro evidence for abnormal pyroptosome formation (p.C285A, p.240Q, p.L265S), impaired nuclear (pro)caspase-1 localization (p.L265S), reduced pro-inflammatory cell death (p.C285A) and changes in macrophage deformability that may contribute to disease pathophysiology of patients with CASP1 variants. This offers previously unknown molecular pathomechanisms in patients with systemic autoinflammatory disease

    Therapeutic approaches to pediatric COVID-19: an online survey of pediatric rheumatologists

    Get PDF
    Data on therapy of COVID-19 in immunocompetent and immunosuppressed children are scarce. We aimed to explore management strategies of pediatric rheumatologists. All subscribers to international Pediatric Rheumatology Bulletin Board were invited to take part in an online survey on therapeutic approaches to COVID-19 in healthy children and children with autoimmune/inflammatory diseases (AID). Off-label therapies would be considered by 90.3% of the 93 participating respondents. In stable patients with COVID-19 on oxygen supply (stage I), use of remdesivir (48.3%), azithromycin (26.6%), oral corticosteroids (25.4%) and/or hydroxychloroquine (21.9%) would be recommended. In case of early signs of 'cytokine storm' (stage II) or in critically ill patients (stage III) (a) anakinra (79.5% stage II; 83.6% stage III) or tocilizumab (58.0% and 87.0%, respectively); (b) corticosteroids (oral 67.2% stage II, intravenously 81.7% stage III); (c) intravenous immunoglobulins (both stages 56.5%); or (d) remdesivir (both stages 46.7%) were considered. In AID, > 94.2% of the respondents would not support a preventive adaptation of the immunomodulating therapy. In case of mild COVID-19, more than 50% of the respondents would continue pre-existing treatment with immunoglobulins (100%), hydroxychloroquine (94.2%), anakinra (79.2%) or canakinumab (72.5%), or tocilizumab (69.8%). Long-term corticosteroids would be reduced by 26.9% (< = 2 mg/kg/d) and 50.0% (> 2 mg/kg/day), respectively, with only 5.8% of respondents voting to discontinue the therapy. Conversely, more than 75% of respondents would refrain from administering cyclophosphamide and anti-CD20-antibodies. As evidence on management of pediatric COVID-19 is incomplete, continuous and critical expert opinion and knowledge exchange is helpful

    Integrative multi‐omics analyses of date palm (Phoenix dactylifera) roots and leaves reveal how the halophyte land plant copes with sea water

    Get PDF
    Date palm (Phoenix dactylifera L.) is able to grow and complete its life cycle while being rooted in highly saline soils. Which of the many well-known salt-tolerance strategies are combined to fine-tune this remarkable resilience is unknown. The precise location, whether in the shoot or the root, where these strategies are employed remains uncertain, leaving us unaware of how the various known salt-tolerance mechanisms are integrated to fine-tune this remarkable resilience. To address this shortcoming, we exposed date palm to a salt stress dose equivalent to seawater for up to 4 weeks and applied integrative multi-omics analyses followed by targeted metabolomics, hormone, and ion analyses. Integration of proteomic into transcriptomic data allowed a view beyond simple correlation, revealing a remarkably high degree of convergence between gene expression and protein abundance. This sheds a clear light on the acclimatization mechanisms employed, which depend on reprogramming of protein biosynthesis. For growth in highly saline habitats, date palm effectively combines various salt-tolerance mechanisms found in both halophytes and glycophytes: “avoidance” by efficient sodium and chloride exclusion at the roots, and “acclimation” by osmotic adjustment, reactive oxygen species scavenging in leaves, and remodeling of the ribosome-associated proteome in salt-exposed root cells. Combined efficiently as in P. dactylifera L., these sets of mechanisms seem to explain the palm's excellent salt stress tolerance

    Clinical and laboratory phenotypes in juvenile-onset Systemic Lupus Erythematosus across ethnicities in the UK.

    Get PDF
    Funder: LUPUS UKSystemic lupus erythematosus (SLE) is a systemic autoimmune/inflammatory disease. Patients diagnosed with juvenile-onset SLE (jSLE), when compared to individuals with adult-onset SLE, develop more severe organ involvement, increased disease activity and greater tissue and organ damage. In adult-onset SLE, clinical characteristics, pathomechanisms, disease progression and outcomes do not only vary between individuals and age groups, but also ethnicities. However, in children and young people, the influence of ethnicity on disease onset, phenotype and outcome has not been investigated in detail. In this study, we investigated clinical and laboratory characteristics in pediatric SLE patients from different ethnic backgrounds (White Caucasian, Asian, Black African/Caribbean) accessing data from a national cohort of jSLE patients (the UK JSLE Cohort Study). Among jSLE patients in the UK, ethnicity affects both the disease's clinical course and outcomes. At diagnosis, Black African/Caribbean jSLE patients show more "classical" laboratory and clinical features when compared to White Caucasian or Asian patients. Black African/Caribbean jSLE patients exhibit more renal involvement and more frequently receive cyclophosphamide and rituximab. Studies targeting ethnicity-specific contributors to disease expression and phenotypes are necessary to improve our pathophysiological understanding, diagnosis and treatment of jSLE

    P2RX7 gene variants associate with altered inflammasome assembly and reduced pyroptosis in chronic nonbacterial osteomyelitis (CNO).

    Get PDF
    Chronic nonbacterial osteomyelitis (CNO), an autoinflammatory bone disease primarily affecting children, can cause pain, hyperostosis and fractures, affecting quality-of-life and psychomotor development. This study investigated CNO-associated variants in P2RX7, encoding for the ATP-dependent trans-membrane K+ channel P2X7, and their effects on NLRP3 inflammasome assembly. Whole exome sequencing in two related transgenerational CNO patients, and target sequencing of P2RX7 in a large CNO cohort (N = 190) were conducted. Results were compared with publicly available datasets and regional controls (N = 1873). Findings were integrated with demographic and clinical data. Patient-derived monocytes and genetically modified THP-1 cells were used to investigate potassium flux, inflammasome assembly, pyroptosis, and cytokine release. Rare presumably damaging P2RX7 variants were identified in two related CNO patients. Targeted P2RX7 sequencing identified 62 CNO patients with rare variants (32.4%), 11 of which (5.8%) carried presumably damaging variants (MAF 20). This compared to 83 of 1873 controls (4.4%), 36 with rare and presumably damaging variants (1.9%). Across the CNO cohort, rare variants unique to one (Median: 42 versus 3.7) or more (≀11 patients) participants were over-represented when compared to 190 randomly selected controls. Patients with rare damaging variants more frequently experienced gastrointestinal symptoms and lymphadenopathy while having less spinal, joint and skin involvement (psoriasis). Monocyte-derived macrophages from patients, and genetically modified THP-1-derived macrophages reconstituted with CNO-associated P2RX7 variants exhibited altered potassium flux, inflammasome assembly, IL-1ÎČ and IL-18 release, and pyroptosis. Damaging P2RX7 variants occur in a small subset of CNO patients, and rare P2RX7 variants may represent a CNO risk factor. Observations argue for inflammasome inhibition and/or cytokine blockade and may allow future patient stratification and individualized care
    corecore