143 research outputs found

    A high-altitude peatland record of environmental changes in the NW Argentine Andes (24 ° S) over the last 2100 years

    Get PDF
    High-altitude cushion peatlands are versatile archives for high-resolution palaeoenvironmental studies, due to their high accumulation rates, range of proxies, and sensitivity to climatic and/or human-induced changes. Especially within the Central Andes, the knowledge about climate conditions during the Holocene is limited. In this study, we present the environmental and climatic history for the last 2100 years of Cerro Tuzgle peatland (CTP), located in the dry Puna of NW Argentina, based on a multi-proxy approach. X-ray fluorescence (XRF), stable isotope and element content analyses (δ13C, δ15N, TN and TOC) were conducted to analyse the inorganic geochemistry throughout the sequence, revealing changes in the peatlands' past redox conditions. Pollen assemblages give an insight into substantial environmental changes on a regional scale. The palaeoclimate varied significantly during the last 2100 years. The results reflect prominent late Holocene climate anomalies and provide evidence that in situ moisture changes were coupled to the migration of the Intertropical Convergence Zone (ITCZ). A period of sustained dry conditions prevailed from around 150 BC to around AD 150. A more humid phase dominated between AD 200 and AD 550. Afterwards, the climate was characterised by changes between drier and wetter conditions, with droughts at around AD 650-800 and AD 1000-1100. Volcanic forcing at the beginning of the 19th century (1815 Tambora eruption) seems to have had an impact on climatic settings in the Central Andes. In the past, the peatland recovered from climatic perturbations. Today, CTP is heavily degraded by human interventions, and the peat deposit is becoming increasingly susceptible to erosion and incision.Fil: Schittek, Karsten. University of Heidelberg; Alemania. Universitat Zu Köln; AlemaniaFil: Kock, Sebastian T.. University of Heidelberg; Alemania. Research Center Jülich; AlemaniaFil: Lücke, Andreas. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Hense, Jonathan. Universitaet Bonn; AlemaniaFil: Ohlendorf, Christian. Universitat Bremen; AlemaniaFil: Kulemeyer, Julio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Jujuy. Universidad Nacional de Jujuy. Centro de Investigaciones y Transferencia de Jujuy; ArgentinaFil: Lupo, Liliana Concepcion. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Jujuy. Universidad Nacional de Jujuy. Centro de Investigaciones y Transferencia de Jujuy; ArgentinaFil: Schäbitz, Frank. Universitat Zu Köln; Alemani

    Structure and Backbone Dynamics of Apo- and Holo-cellular Retinol-binding Protein in Solution

    Get PDF
    Retinoid-binding proteins play an important role in regulating transport, storage, and metabolism of vitamin A and its derivatives. The solution structure and backbone dynamics of rat cellular retinol-binding protein type I (CRBP) in the apo- and holo-form have been determined and compared using multidimensional high resolution NMR spectroscopy. The global fold of the protein is consistent with the common motif described for members of the intracellular lipid-binding protein family. The most relevant difference between the NMR structure ensembles of apo- and holoCRBP is the higher backbone disorder, in the ligand-free form, of some segments that frame the putative entrance to the ligand-binding site. These comprise alpha-helix II, the subsequent linker to beta-strand B, the hairpin turn between beta-strands C and D, and the betaE-betaF turn. The internal backbone dynamics, obtained from 15N relaxation data (T1, T2, and heteronuclear nuclear Overhauser effect) at two different fields, indicate several regions with significantly higher backbone mobility in the apoprotein, including the betaC-betaD and betaE-betaF turns. Although apoCRBP contains a binding cavity more shielded than that of any other retinoid carrier, conformational flexibility in the portal region may assist retinol uptake. The stiffening of the backbone in the holoprotein guarantees the stability of the complex during retinol transport and suggests that targeted retinol release requires a transiently open state that is likely to be promoted by the acceptor or the local environment

    Efficient time stepping for numerical integration using reinforcement learning

    Full text link
    Many problems in science and engineering require the efficient numerical approximation of integrals, a particularly important application being the numerical solution of initial value problems for differential equations. For complex systems, an equidistant discretization is often inadvisable, as it either results in prohibitively large errors or computational effort. To this end, adaptive schemes have been developed that rely on error estimators based on Taylor series expansions. While these estimators a) rely on strong smoothness assumptions and b) may still result in erroneous steps for complex systems (and thus require step rejection mechanisms), we here propose a data-driven time stepping scheme based on machine learning, and more specifically on reinforcement learning (RL) and meta-learning. First, one or several (in the case of non-smooth or hybrid systems) base learners are trained using RL. Then, a meta-learner is trained which (depending on the system state) selects the base learner that appears to be optimal for the current situation. Several examples including both smooth and non-smooth problems demonstrate the superior performance of our approach over state-of-the-art numerical schemes. The code is available under https://github.com/lueckem/quadrature-ML

    Sidekick compilation with xDSL

    Full text link
    Traditionally, compiler researchers either conduct experiments within an existing production compiler or develop their own prototype compiler; both options come with trade-offs. On one hand, prototyping in a production compiler can be cumbersome, as they are often optimized for program compilation speed at the expense of software simplicity and development speed. On the other hand, the transition from a prototype compiler to production requires significant engineering work. To bridge this gap, we introduce the concept of sidekick compiler frameworks, an approach that uses multiple frameworks that interoperate with each other by leveraging textual interchange formats and declarative descriptions of abstractions. Each such compiler framework is specialized for specific use cases, such as performance or prototyping. Abstractions are by design shared across frameworks, simplifying the transition from prototyping to production. We demonstrate this idea with xDSL, a sidekick for MLIR focused on prototyping and teaching. xDSL interoperates with MLIR through a shared textual IR and the exchange of IRs through an IR Definition Language. The benefits of sidekick compiler frameworks are evaluated by showing on three use cases how xDSL impacts their development: teaching, DSL compilation, and rewrite system prototyping. We also investigate the trade-offs that xDSL offers, and demonstrate how we simplify the transition between frameworks using the IRDL dialect. With sidekick compilation, we envision a future in which engineers minimize the cost of development by choosing a framework built for their immediate needs, and later transitioning to production with minimal overhead

    Atomic resolution crystal structure of squid ganglion DFPase

    Full text link

    Combined Coronary CT-Angiography and TAVI-Planning: A Contrast-Neutral Routine Approach for Ruling-Out Significant Coronary Artery Disease

    Get PDF
    Background: Significant coronary artery disease (CAD) is a common finding in patients undergoing transcatheter aortic valve implantation (TAVI). Assessment of CAD prior to TAVI is recommended by current guidelines and is mainly performed via invasive coronary angiography (ICA). In this study we analyzed the ability of coronary CT-angiography (cCTA) to rule out significant CAD (stenosis ≥ 50%) during routine pre-TAVI evaluation in patients with high pre-test probability for CAD. Methods: In total, 460 consecutive patients undergoing pre-TAVI CT (mean age 79.6 ± 7.4 years) were included. All patients were examined with a retrospectively ECG-gated CT-scan of the heart, followed by a high-pitch-scan of the vascular access route utilizing a single intravenous bolus of 70 mL iodinated contrast medium. Images were evaluated for image quality, calcifications, and significant CAD; CT-examinations in which CAD could not be ruled out were defined as positive (CAD+). Routinely, patients received ICA (388/460; 84.3%; Group A), which was omitted if renal function was impaired and CAD was ruled out on cCTA (Group B). Following TAVI, clinical events were documented during the hospital stay. Results: cCTA was negative for CAD in 40.2% (188/460). Sensitivity, specificity, PPV, and NPV in Group A were 97.8%, 45.2%, 49.6%, and 97.4%, respectively. Median coronary artery calcium score (CAC) was higher in CAD+-patients but did not have predictive value for correct classification of patients with cCTA. There were no significant differences in clinical events between Group A and B. Conclusion: cCTA can be incorporated into pre-TAVI CT-evaluation with no need for additional contrast medium. cCTA may exclude significant CAD in a relatively high percentage of these high-risk patients. Thereby, cCTA may have the potential to reduce the need for ICA and total amount of contrast medium applied, possibly making pre-procedural evaluation for TAVI safer and faster
    corecore