184 research outputs found

    40Ar/39Ar ages of muscovites from modern Himalayan rivers: Himalayan evolution and the relative contribution of tectonicsand climate

    Get PDF
    International audience40Ar/39Ar ages from detrital muscovites have been analyzed from six modern rivers in central and western Nepal; the size of the drainage basins associated with these samples ranges from a few square kilometers to >40,000 km2. These data, when combined with previously published ages of detrital muscovites from other modern rivers in the region, suggest that a good correspondence between normalized age and normalized topography (the comparison of t* and z*) is rare, due to either nonuniform rates of passage through the ∼400 °C isotherm or subsequent faulting in the drainage area. The closure temperature of Ar in muscovite is perhaps too high to make meaningful comparisons to modern topography in tectonic analysis of active orogens.The distribution of 40Ar/39Ar ages from detrital muscovites from the Karnali basin in western Nepal is much older than that for the Narayani basin in central Nepal. The Karnali muscovites, when combined with previously published muscovites from the Siwalik Group in western Nepal and zircon fission track ages from modern and ancient samples from the region, suggest a thermal history for western Nepal consistent with vigorous tectonics (and attendant erosion) before the middle Miocene but a significant diminution in the rate of erosion since ca. 10 Ma.40Ar/39Ar ages of detrital muscovites from the Narayani basin in central Nepal suggest a markedly different history with an acceleration of the rate of erosion since ca. 10 Ma and reactivation of major faults; this is consistent with the abundant bedrock data from the Narayani basin.The strong difference in the erosional history of the adjacent Karnali and Narayani basins, as evidenced by the 40Ar/39Ar ages from detrital muscovites, is not likely to have been due to variations in climate, but rather due to strain partitioning within the Himalaya during and after the Miocene

    C and O isotope compositions of modern fresh-water mollusc shells and river waters from Himalaya and Ganga plain

    Get PDF
    The aim of this paper is to unfold the relationship between O and C isotope compositions of modern fresh-water mollusc shells and water in order to refine the basis of interpretation for paleoenvironnemental reconstruction in the sub-Himalayan river basins. Large number of mollusc shells and associated host water from both running water and closed body of water were analysed including intra-shell variability in a few cases. The O isotopic compositions of river waters in the Himalayas and Ganga plain have a large range, from -18‰ in the north of the High range up to -8 to -4 ‰ in the Ganga plain. d18O of rivers are also seasonally variable, especially in foothills rivers whereas the seasonal contrast is smoothed out for main Himalayan rivers having large catchments. O isotopic compositions of bulk shells (Aragonite) vary between -15 and -5 ‰. Average d18OAra values are consistent with precipitation at equilibrium with host waters at a temperature range of 20-25°C suggesting that shell growth may be favoured during non-monsoon conditions. Shells collected along main Himalayan rivers have d18O values uniformly distributed within -11 and -6 ‰ reflecting the minimal seasonal contrast shown by these rivers. In contrast, O isotopic compositions of shells from foothills rivers vary only by 4‰. This shows that, depending on the type of river where the molluscs grow, the information in term of d18O amplitude will be different for identical climatic conditions. In closed or pond water bodies significant enrichment in 18O due to evaporation is observed. The C isotopic compositions of river dissolved inorganic carbon (DIC) decrease downstream from 0 to -10 ‰ reflecting input of soil derived alkalinity and plant productivity in the river. d13C of shells are systematically lower than compositions calculated for equilibrium with river DIC indicating that in addition to DIC, a significant fraction of carbon is derived from metabolic sources. Intra-shell d13C are stable compared to the seasonal variability of DIC suggesting that the pool of organic carbon changes throughout year

    Post-glacial climate forcing of surface processes in the Ganges–Brahmaputra river basin and implications for carbon sequestration

    Get PDF
    © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 478 (2017): 89-101, doi:10.1016/j.epsl.2017.08.013.Climate has been proposed to control both the rate of terrestrial silicate weathering and the export rate of associated sediments and terrestrial organic carbon to river-dominated margins – and thus the rate of sequestration of atmospheric CO2 in the coastal ocean – over glacial-interglacial timescales. Focused on the Ganges-Brahmaputra rivers, this study presents records of post-glacial changes in basin-scale Indian summer monsoon intensity and vegetation composition based on stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the channel-levee system of the Bengal Fan. It then explores the role of these changes in controlling the provenance and degree of chemical weathering of sediments exported by these rivers, and the potential climate feedbacks through organic-carbon burial in the Bengal Fan. An observed 40‰ shift in δD and a 3–4‰ shift in both bulk organic-carbon and plant-wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlates well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes likely coincided with a subtle focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, grain-size-normalized organic-carbon concentrations in the Bengal Fan remained constant through time, despite order-of-magnitude level changes in catchment-scale monsoon precipitation and enhanced chemical weathering (recorded as a gradual increase in K/Si* and detrital carbonate content, and decrease in H2O+/Si*, proxies) throughout the study period. These findings demonstrate a partial decoupling of climate change and silicate weathering during the Holocene and that marine organic-carbon sequestration rates primary reflect rates of physical erosion and sediment export as modulated by climatic changes. Together, these results reveal the magnitude of climate changes within the Ganges-Brahmaputra basin following deglaciation and a closer coupling of monsoon strength with OC burial than with silicate weathering on millennial timescales.This work was supported by the National Science Foundation [grant numbers OCE-1333826 and OCE-1333387]

    Sustained wood burial in the Bengal Fan over the last 19 My

    Get PDF
    Author Posting. © National Academy of Sciences, 2019. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 116(45), (2019): 22518-22525, doi:10.1073/pnas.1913714116.The Ganges–Brahmaputra (G-B) River system transports over a billion tons of sediment every year from the Himalayan Mountains to the Bay of Bengal and has built the world’s largest active sedimentary deposit, the Bengal Fan. High sedimentation rates drive exceptional organic matter preservation that represents a long-term sink for atmospheric CO2. While much attention has been paid to organic-rich fine sediments, coarse sediments have generally been overlooked as a locus of organic carbon (OC) burial. However, International Ocean Discovery Program Expedition 354 recently discovered abundant woody debris (millimeter- to centimeter-sized fragments) preserved within the coarse sediment layers of turbidite beds recovered from 6 marine drill sites along a transect across the Bengal Fan (∼8°N, ∼3,700-m water depth) with recovery spanning 19 My. Analysis of bulk wood and lignin finds mostly lowland origins of wood delivered episodically. In the last 5 My, export included C4 plants, implying that coarse woody, lowland export continued after C4 grassland expansion, albeit in reduced amounts. Substantial export of coarse woody debris in the last 1 My included one wood-rich deposit (∼0.05 Ma) that encompassed coniferous wood transported from the headwaters. In coarse layers, we found on average 0.16 weight % OC, which is half the typical biospheric OC content of sediments exported by the modern G-B Rivers. Wood burial estimates are hampered by poor drilling recovery of sands. However, high-magnitude, low-frequency wood export events are shown to be a key mechanism for C burial in turbidites.This work was funded by National Science Foundation Grants OCE-1401217 and COL-T354A55 to S.J.F. and OCE-1400805 to V.G. Graduate student participation in the project received support from University of Southern California Provost’s Fellowship to H.L. Samples were provided by the International Ocean Discovery Program. We are grateful for the efforts of the Expedition 354 Science Party, Carl Johnson, and Zongguang Liu. C.F.-L. and A.G. were supported by IODP-France. We thank Colin Osborne and Maria Vorontsova for helpful discussions.2020-04-2

    Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin)

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 84 (2012): 410-432, doi:10.1016/j.gca.2012.02.001.We present an extensive river sediment dataset covering the Ganga basin from the Himalayan front downstream to the Ganga mainstream in Bangladesh. These sediments were mainly collected over several monsoon seasons and include depth profiles of suspended particles in the river water column. Mineral sorting is the first order control on the chemical composition of river sediments. Taking into account this variability we show that sediments become significantly depleted in mobile elements during their transit through the floodplain. By comparing sediments sampled at the Himalayan front with sediments from the Ganga mainstream in Bangladesh it is possible to budget weathering in the floodplain. Assuming a steady state weathering regime in the floodplain, the weathering of Himalayan sediments in the Gangetic floodplain releases ca. (189 ± 92)109 and (69 ± 22)109 moles/yr of carbonate bound Ca and Mg to the dissolved load, respectively. Silicate weathering releases (53 ± 18)109 and (42 ± 13)109 moles/yr of Na and K while the release of silicate Mg and Ca is substantially lower, between ca. 0 and 20109 moles/yr. Additionally, we show that sediment hydration, [H2O+], is a sensitive tracer of silicate weathering that can be used in continental detrital environments, such as the Ganga basin. Both [H2O+] content and the D/H isotopic composition of sediments increases during floodplain transfer in response to mineral hydrolysis and neoformations associated to weathering reactions. By comparing the chemical composition of river sediments across the floodplain with the composition of the eroded Himalayan source rocks, we suggest that the floodplain is the dominant location of silicate weathering for Na, K and [H2O+]. Overall this work emphasizes the role of the Gangetic floodplain in weathering Himalayan sediments. It also demonstrates how detrital sediments can be used as weathering tracers if mineralogical and chemical sorting effects are properly taken into account.This work was supported by INSU program “Relief de la Terre” and ANR Calimero. Valier Galy was supported by the U.S. National Science Fundation (Grant OCE-0851015)

    Loading and fate of particulate organic carbon from the Himalaya to the Ganga–Brahmaputra delta

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 72 (2008): 1767-1787, doi:10.1016/j.gca.2008.01.027.We use the evolution of river sediment characteristics and sedimentary Corg from the Himalayan range to the delta to study the transport of Corg in the Ganga-Brahmaputra system and especially its fate during floodplain transit. A detailed characterisation of both mineral and organic particles for a sampling set of river sediments allows taking into account the sediment heterogeneity characteristic of such large rivers. We study the relationships between sediment characteristics (mineralogy, grain size, specific area) and Corg content in order to evaluate the controls on Corg loading. Contributions of C3 and C4 plants are estimated from Corg stable isotopic composition (δ13Corg). We use the evolution of δ13Corg values from the Himalayan range to the delta in order to study the fate of Corg during floodplain transit. Ganga and Brahmaputra sediments define two distinct linear relations with specific area. In spite of 4 to 5 times higher specific area, Ganga sediments have similar Corg content, grain size and mineralogy as Brahmaputra sediments, indicating that specific area does not exert a primary control on Corg loading. The general correlation between the total Corg content and Al/Si ratio indicates that Corg loading is mainly related to: (1) segregation of organic particles under hydrodynamic forces in the river and, (2) the ability of mineral particles to form organo-mineral aggregates. Bed and suspended sediments have distinct δ13Corg values. In bed sediments, δ13Corg values are compatible with a dominant proportion of fossil Corg derived from Himalayan rocks erosion. Suspended sediments from Himalayan tributaries at the outflow of the range have low δ13Corg values (-24.8 ‰ average) indicating a dominant proportion of C3 plant inputs. In the Brahmaputra basin, δ13Corg values of suspended sediments are constant along the river course in the plain. On the contrary, suspended sediments of the Ganga in Bangladesh have higher δ13Corg values (-22.4 to -20.0‰), consistent with a significant contribution of C4 plant derived from the floodplain. Our data indicate that, during the plain transit, more than 50% of the recent biogenic Corg coming from the Himalaya is oxidised and replaced by floodplain Corg. This renewal process likely occurs 40 during successive deposition-erosion cycles and river course avulsions in the plain.This study was funded by CNRS-INSU programs "Eclipse" and "Relief de la Terre"

    Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system

    Get PDF
    Author Posting. © Nature Publishing Group, 2007. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 450 (2007): 407-410, doi:10.1038/nature06273.Continental erosion controls atmospheric carbon dioxide levels on geological timescales through silicate weathering, riverine transport and subsequent burial of organic carbon in oceanic sediments. The efficiency of organic carbon deposition in sedimentary basins is however limited by the organic carbon load capacity of the sediments and organic carbon oxidation in continental margins. At the global scale, previous studies have suggested that about 70 per cent of riverine organic carbon is returned to the atmosphere, such as in the Amazon basin. Here we present a comprehensive organic carbon budget for the Himalayan erosional system, including source rocks, river sediments and marine sediments buried in the Bengal fan. We show that organic carbon export is controlled by sediment properties, and that oxidative loss is negligible during transport and deposition to the ocean. Our results indicate that 70 to 85 per cent of the organic carbon is recent organic matter captured during transport, which serves as a net sink for atmospheric carbon dioxide. The amount of organic carbon deposited in the Bengal basin represents about 10 to 20 per cent of the total terrestrial organic carbon buried in oceanic sediments. High erosion rates in the Himalayas generate high sedimentation rates and low oxygen availability in the Bay of Bengal that sustain the observed extreme organic carbon burial efficiency. Active orogenic systems generate enhanced physical erosion and the resulting organic carbon burial buffers atmospheric carbon dioxide levels, thereby exerting a negative feedback on climate over geological timescales
    corecore