

C and O isotope compositions of modern fresh-water mollusc shells and river waters from Himalaya and Ganga plain

Ananta Prasad Gajurel, Christian France-Lanord, Pascale Huyghe, Caroline Guilmette, Damayanti Gurung

► To cite this version:

Ananta Prasad Gajurel, Christian France-Lanord, Pascale Huyghe, Caroline Guilmette, Damayanti Gurung. C and O isotope compositions of modern fresh-water mollusc shells and river waters from Himalaya and Ganga plain. Chemical Geology, Elsevier, 2006, 233 (1-2), pp.156-183. <hr/>

HAL Id: hal-00103698 https://hal.archives-ouvertes.fr/hal-00103698

Submitted on 5 Oct 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

C and O isotope compositions of modern fresh-water mollusc shells and river waters

from Himalaya and Ganga plain

Ananta Prasad Gajurel^{a,b,}, Christian France-Lanord^{c,}, Pascale Huyghe^{b,*}, Caroline Guilmette^{c,}, Damayanti Gurung^{d,}

^a Department of Geology, Tri-Chandra Campus, Tribhuvan University, Kathmandu, Nepal

^b Université Joseph Fourier, LGCA/CNRS, Grenoble, France,

^c CRPG/CNRS, Vandoeuvre les Nancy, France,

^d Department of Geology, Kirtipur Campus, Tribhuvan University, Kathmandu, Nepal

* Corresponding author. Fax: +33 4 76 51 40 58 E-mail adresse <u>huyghe@ujf-grenoble.fr</u>

1 Abstract

The aim of this paper is to unfold the relationship between O and C isotope compositions of modern fresh-water mollusc shells and water in order to refine the basis of interpretation for paleoenvironnemental reconstruction in the sub-Himalayan river basins. Large number of mollusc shells and associated host water from both running water and closed body of water were analysed including intra-shell variability in a few cases.

6 The O isotopic compositions of river waters in the Himalayas and Ganga plain have a large range, from -18‰ in 7 the north of the High range up to -8 to -4 % in the Ganga plain. δ^{18} O of rivers are also seasonally variable, 8 especially in foothills rivers whereas the seasonal contrast is smoothed out for main Himalayan rivers having 9 large catchments. O isotopic compositions of bulk shells (Aragonite) vary between -15 and -5 ‰. Average 10 $\delta^{18}O_{Ara}$ values are consistent with precipitation at equilibrium with host waters at a temperature range of 20-25 11 °C suggesting that shell growth may be favoured during non-monsoon conditions. Shells collected along main 12 Himalayan rivers have δ^{18} O values uniformly distributed within -11 and -6 ‰ reflecting the minimal seasonal 13 contrast shown by these rivers. In contrast, O isotopic compositions of shells from foothills rivers vary only by 4 14 %. This shows that, depending on the type of river where the molluscs grow, the information in term of δ^{18} O 15 amplitude will be different for identical climatic conditions. In closed or pond water bodies significant 16 enrichment in ¹⁸O due to evaporation is observed.

17 The C isotopic compositions of river dissolved inorganic carbon (DIC) decrease downstream from 0 to -10 18 ‰ reflecting input of soil derived alkalinity and plant productivity in the river. δ^{13} C of shells are systematically 19 lower than compositions calculated for equilibrium with river DIC indicating that in addition to DIC, a 20 significant fraction of carbon is derived from metabolic sources. Intra-shell δ^{13} C are stable compared to the 21 seasonal variability of DIC suggesting that the pool of organic carbon changes throughout year.

22

23 Keywords

C and O isotopes, fresh-water molluscs, modern rivers, Himalaya, Ganga, seasonality, running water versus pond
 water.

- 26
- 27 1. Introduction
- 28

29 Carbon and oxygen isotope compositions of carbonate skeletons have been extensively used for reconstructing 30 past environmental parameters (e.g. Lowenstam and Epstein, 1954; Woodruff et al., 1981; Shackleton, 1986; 31 Miller et al., 1987). From a study of marine mollusc shells and their ambient marine waters, Lécuyer et al. (2004) 32 demonstrated that the oxygen isotope compositions of shells from most fossil mollusc species are suitable to 33 estimate past seawater temperatures. In river systems, mollusc shells represent remarkable sources of 34 geochemical information and allow to document seasonal variations through detailed analysis of growth layers 35 (e.g. Abell, 1985; Fritz and Poplawski, 1974; Dettman et al., 1999; Kaandorp et al., 2003). Nonetheless, only few 36 studies provide stable isotope data of laboratory-reared or natural shells along with their ambient waters 37 (Grossman and Ku, 1986; Margosian et al., 1987; Weidman et al., 1994; Klein et al., 1996).

38 Some studies have focussed on the reconstruction of paleo-environmental conditions in the Gangetic plain using 39 fossils from the plain and Siwaliks (Garzione et al., 2000a; Dettman et al., 2001; Sharma et al., 2004; Gajurel et 40 al., 2003). These studies reveal a large variability in stable isotope compositions through time, and importantly 41 large seasonal cycle. Clearly, fossil records of fresh water mollusc represent a rich source of information to 42 document past evolution of river system. Our objective is to refine the basis of interpretation of oxygen and 43 carbon isotope compositions of fresh-water molluscs for paleoenvironemental reconstruction in the sub-44 Himalayan river basin. For that purpose, we collected modern mollusc samples across a wide range in elevation, 45 from the Ganga Plain to the highest physiographic zones. Waters in the Himalayan rivers and in closed or 46 ponded bodies of water exhibit seasonal changes in temperature and stable isotope (C and O) compositions (Galy 47 and France-Lanord, 1999; Garzione et al, 2000b). Therefore, we sampled several modern mollusc species from 48 streams/rivers and closed bodies of water of Himalayan Valleys and Ganga plain together with host water 49 samples and ambient temperature records to unfold the relationship between shell composition and water 50 parameters. In this paper, we compare water bodies in different geographical settings that differ primarily in the 51 size and elevation of their catchments: the Main Himalayan rivers draining complete Himalayan sections from 52 Tibet to the floodplain, small rivers originating from the Himalayan foothills, the main stream Ganga, and some 53 lakes, ponds and North Himalayan rivers.

54

- 55
- 56

57 Three large rivers emerge from the Nepalese Himalayan belt and flow to the Ganga plain within ~300 58 km wide basin (Fig. 1): the Kosi, Narayani/Gandak and Karnali/Ghaghara rivers, in eastern, central and western

2. Setting: modern Himalayan drainage system and climate

59 Nepal respectively. They drain a large part of Himalaya extending from North Himalaya (altitude 2500-4000 m 60 above mean sea level) through High Himalaya (>4000 m), Lesser Himalaya (300 to 3000 m) and Siwaliks (150-61 1400 m) to the Ganga plain (less than 150-200 m). The headwaters of these large rivers are fed by melt water from snow and glaciers. All of them, except the Arun, make 90° turns, flowing either eastward or westward 62 63 before crossing the Mahabharat Range, north of the trace of the Main Boundary Thrust (MBT). They then, flow 64 axially, sub-parallel to the MBT for more than 100 km and turn southward through the areas of structural 65 weakness to emerge in to the Ganga plain (Hagen, 1969; Seeber and Gornitz, 1983; Gupta, 1997). The Kosi, 66 Narayani and Karnali rivers have high average annual water discharge (varying between 1500 to 2000 \vec{m}/s) 67 (Sinha and Friend, 1994; DHM, 1998) and drain more than 75 % of the area of the Himalaya of Nepal. Their 68 sediment bed load form large modern alluvial megafans in the Ganga plain (Wells and Dorr, 1987; Sinha and 69 Friend, 1994). A few small rivers originate in the Lesser Himalaya, Siwalik foothills and within the Ganga plain. 70 They merge with the major rivers in the plain. They have smaller discharge and form interfans between the 71 megafans of the large rivers in the plain (Sinha and Friend, 1994). All the rivers of Nepal are tributaries of the 72 Ganga River. The main tributaries of the Ganga River originate from Himalaya although some flow from the 73 Indian shield representing less than 20% of the total Ganga discharge (Rao, 1979).

74 Our river water samples represent a wide range of climate with a characteristic pattern of temperature. 75 In the central Ganga plain average minimum and maximum temperatures are 8 and 21 °C for November-76 February and 27 to 33 °C for March-June (Sharma et al., 2004). Surface air temperature records for more than 16 77 years (DHM, 2002) near the northern margin of the Ganga plain and in the Dun Valleys show more or less 78 similar climate with monthly maximum average temperatures of 36 °C for the April to September period 79 (summer) and 26 °C for the October to March period (winter). Tansen, Pokhara and Kathmandu in Lesser 80 Himalaya have mean values of 28 °C, 30 °C and 29 °C during the summer period and 20 °C, 23 °C and 22 °C 81 during the winter period. In North Himalayan valley (Jomsom), the mean annual minimum and maximum 82 temperatures are 5.3 °C and 17.5 °C, respectively.

Nepal receives about 80 % of the total annual precipitation during the June-September monsoon (DHM, Average annual precipitation in North Himalayan valley (Jomsom) is 257 mm. High annual rainfall (>3000 mm) occurs in the Arun and Indrawati river headwaters (High Himalaya). The average wet and dry season precipitations in Pokhara are 3934 and 157 mm, respectively. The highest annual precipitation is recorded in the Pokhara valley, which les within the catchment of the Narayani River system while the Karnali River system is located in a lower precipitation area (<2000 mm) (DHM, 2002). The Ganga plain and Dun Valleys

- 89 (Siwalik foothills) receive average precipitation of 1760-69 mm and 1875-99 mm during wet-dry periods,
- 90 respectively. The Ganga plain (in India) receives annual rainfall of 800-2000 mm (Sinha and Friend, 1994).
- 91

92 **3.** Sampling strategy and fauna

93

94 The sampling area covers (24° 30' N28° 50' N) latitude and (83° E-88° 30' E) longitude while the 95 altitude ranges from 17 to 3576 m (Fig. 1). We collected freshwater modern molluscs from a wide range of 96 habitats including river shores, lake shores, ox-bow lakes and isolated ponds situated within North Himalaya, 97 Lesser Himalaya and Dun valleys, and the Ganga alluvial plain and Bangladesh delta plain. The sampled 98 specimens from the Ganga plain and Himalayan valleys can be easily identified (Subba Rao, 1989; Subba and 99 Ghosh, 2000; Nesemann et al., 2001) and represent two genera from Bivalvia class and ten genera from 100 Gastropoda class whose widespread genus are Bellamya sp. and Melanoid sp. (Fig. 2). They include living and 101 dead specimens. Mollusc's habitat water samples (host water) were collected while habitat water temperature 102 (ambient temperature), pH and air temperature were also recorded during sampling for most locations. The 103 favoured habitat of molluscs in this study are low current environment and closed or ponded environments. In 104 the case of ponds, fresh water as well as stagnant water samples were collected to examine the possible effect of 105 atmospheric exchange and evaporation on the carbon and oxygen isotopic compositions of the biogenic 106 carbonate. At several locations, members of different species were taken in order to examine the variability in 107 shell chemistry of different taxa living in the same environment, caused by different physiological effects and 108 growth periods.

109

- 110 4. Analytical techniques
- 111
- 112 *4.1 Water*

113

114 Meteoric water samples were collected daily at Kathmandu using a PVC collector. Special care was 115 taken to avoid evaporation. The fact that all samples lie close to the global meteoric water line confirms the 116 reliability of the sampling. When daily precipitation was lower than 1 mm we did not collect any sample. River 117 water samples were filtered on site through $<0.2\mu$ m nylon membranes and stored in polyethylene bottles free of 118 air. The carbon isotopic compositions of dissolved inorganic carbon ($\delta^{13}C_{DIC}$) were measured on CO₂ released by acidification with H₃PO₄ in vacuum. Aliquots of 15 to 20 ml were injected into the reaction vessel through a septum. The CO₂ released after acidification was extracted while water was trapped as ice (-80 to -50°C). The outgassing procedure was repeated three times in order to extract most of the DIC from the water. Total CO₂ released was measured manometrically for DIC concentration and analysed for ¹³C/¹²C ratio using a modified VG 602D isotope ratio mass spectrometer. Results are expressed as $\delta^{13}C_{\text{DIC}}$ relative to PDB and the overall reproducibility is ± 0.3‰.

125 The oxygen isotopic composition of host water samples ($\delta^{18}O_W$) were analysed using the classical CO₂ 126 equilibration method of Epstein and Mayeda (1953). One cm³ of water was equilibrated in a vacuum container 127 sealed with a septum with CO₂ at 900 mbar and 25 °C ±0.1 °C. ¹⁸O/¹⁶O ratios are expressed as $\delta^{18}O_W$ relative to 128 V-SMOW and overall analytical reproducibility is ± 0.1 ‰.

Hydrogen isotopic compositions of water samples were measured using a GV-Isoprime mass spectrometer coupled to an elemental analyzer. 3 μ l of water were injected over Cr reactor at 1100°C under He flux and analysed in continuous flow mode. D/H ratios are expressed as δ D relative to V-SMOW and overall analytical reproducibility is better than $\pm 2 \%$.

133

134 *4.2 Mollusc shells*

135

Mollusc shell samples were cleaned in distilled water with ultrasound to remove adhered sediments and organic debris. Before micro sampling, shell outer periostracum, which is composed of organic coloured layers, were removed by scraping with the help of manual drilling bit to expose white prismatic layer. Intra-shell samples were taken all along the profile parallel to the growth lines of intact shell. Typical width of growth layers is 0.5 to 2 mm. Whole shell samples are either whole shell grinded for small specimens (one mm) or, for larger ones, a slice perpendicular to the growth line covering the entire life span of the specimen.

For experimental analyses, three individual representative average samples of a *Bellamya bengalensis* were treated in three different ways: one powder sample was vacuum roasted for one hour at 380 °C and another sample was heated in plasma O₂ cold asher for one night to volatilize shell organic compounds and the third one was not treated. These procedures did not produce any remarkable variation (Table 1). The samples were reacted under vacuum with ~100 % phosphoric acid at 25 \pm 0.1 °C (McCrea, 1950). Isotopic analyses of the released CO₂ were performed in a modified mass spectrometer model VG 602. Carbon and oxygen isotopic ratios of aragonite are expressed as $\delta^{13}C_{Ara}$ and $\delta^{18}O_{Ara}$ relative to PDB. Following common practice for aragonite shell

149 analyses (e.g. Dettman et al, 1999; Lecuver et al, 2004) we did not apply any correction specific for aragonite 150 and used the standard correction for calcite. Ten to fifteen repeated analyses of calcite international standards 151 over the analytical period are : NBS-18 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ ‰, NBS-19 $\delta^{13}C = -5.02 \pm 0.04$ ‰ and $\delta^{18}O = -23.06 \pm 0.13$ 2.00 ± 0.04 ‰ and $\delta^{18}O = -2.15\pm0.13$ ‰, IAEA -CO-1 $\delta^{13}C = 2.47\pm0.04$ ‰ and $\delta^{18}O = -2.46\pm0.09$ ‰, IAEA -CO-1 152 $8 \delta^{13}C = -5.74 \pm 0.07$ ‰ and $\delta^{18}O = -22.79 \pm 0.1$ ‰. Overall reproducibility is ± 0.1 ‰. 153 154 Shell mineralogy was examined using X-Ray diffraction in which only aragonite was observed for 155 whole shell powders (n=3). The carbonate content of shells was calculated from manometrically measured CO₂ 156 yields after complete reaction with phosphoric acid. Carbonate contents ranged from 95% to 99%. 157 158 5. Results 159 160 5.1 Isotopic composition of waters 161 162 Hydrogen and oxygen isotopic composition of waters (δD_W , $\delta^{18}O_W$) and carbon isotope ratio of DIC $(\delta^{13}C_{DIC})$ are listed in table 2. Sample locations are listed in appendix 1 and 2. Additional isotopic data from 163 164 Ramesh and Sarin (1992), Jenkins et al. (1987) and Galy and France-Lanord (1999) have also been included. 165 The $\delta^{18}O_W$ values of rivers, lakes and ponds in the Himalayas and Ganga plain show a large range as seen in

166 figures 3 and 4 for different zones (North Himalaya, High Himalaya, Kathmandu Valley, Phewa Lake (Pokhara), 167 foothills, Main Himalayan rivers and Main Ganga River in the plain). Himalayan rivers display a strong 168 dependence on elevation with $\delta^{18}O_W$ around -18 % to the north of the High range up to -8 to -4 % in the Ganga 169 plain. Such a variability has already been reported by Ramesh and Sarin (1992) and Garzione et al. (2000b). The 170 large-scale variations observed from High Himalaya to the Ganga plain are controlled by the combined effects of 171 elevation, orographic precipitation and temperature. Orographic precipitation drives a strong Rayleigh 172 distillation, which tends to deplete the clouds remaining over the north Himalaya in the heavy isotope. In 173 parallel, temperatures strongly decrease from the plain to the high range amplifying this trend.

174 $\delta^{18}O_W$ of rivers are also seasonally variable. Monsoon rain can be 4 ‰ lower than precipitation during 175 the dry season as obviously observed in foothills rivers (Fig. 4). Over the whole basin, $\delta^{18}O$ of monsoon rains are 176 markedly lower compared to precipitations during the rest of the year. This is well documented in the Gangetic 177 plain and is related to the "amount effect" or intensity of precipitation (Rozanski et al., 1993; Bhattacharya et al., 178 2003). Our record of precipitation at Kathmandu over the year 2001-02 (appendix 3, Fig. 5) shows a similar 179 seasonal evolution. For Kathmandu, the δ^{18} O values of precipitation are close to 0% and even positive 180 throughout the dry season, after which they drop abruptly to the range of -5 to -15‰ at the onset of the monsoon 181 season. The variation is clearly correlated with the intensity of precipitation. The weighted average δ^{18} O values is 182 -7.9 ‰ for the whole year and that of the monsoon period is -10.6 ‰. This sharp seasonal contrast is smoothed 183 in the river signal, especially for large area catchments as observed for the Ghaghara, Narayani-Gandak and Kosi 184 rivers. For the Narayani-Gandak, which is most extensively monitored, the difference between dry and wet 185 seasons does not exceed 3 %. In the floodplain, the Ganga shows a clear seasonal contrast in the western part up 186 to Patna (Fig. 3b). Dry season compositions are between -6 to -4 ‰ whereas during monsoon they vary between 187 -8 to -10 %. This difference results from both the lower δ^{18} O values of monsoon precipitation and the greater influx of Himalayan water during the monsoon as the δ^{18} O of precipitation is lower in the Himalaya than on the 188 189 plain. At the outflow in Bangladesh, the Ganga is usually ~-10 ‰ during monsoon. Values as high as -7 ‰ have 190 been reached during the 2004 monsoon, probably due to large rainfall amounts on the Ganga Plain during that 191 period. The Gomti (Table 2), which is a plain fed river, appears stable and is around -7 ‰ throughout the year. 192 This stability is probably related to a discharge of local groundwater (Bhattacharya et al., 1985; Sinha and 193 Friend, 1994).

194 During the dry season, evaporation in the floodplain can significantly affect the O and H isotopic 195 compositions (Krishnamurthy and Bhattacharya, 1991; Ramesh and Sarin, 1992). This is shown by compositions 196 lying below the meteoric water line in a δ^{18} O vs. δ D diagram (Fig. 6). We observe a similar trend for Ganga 197 water in May 2004 (Table 2) whereas Main Himalayan rivers such as the Ghaghara, Gandak and Kosi show no 198 significant effect of evaporation. Monsoon compositions in the floodplain show no shift from the meteoric 199 waterline. Similarly, North Himalayan rivers and Kathmandu Valley rivers show no evidence for evaporation 200 (Fig. 6) except for minor catchments in the Kathmandu Valley during monsoon (Jenkins et al., 1987). Finally, we 201 observe major effects of evaporation for ponds located in the floodplain and Himalaya (Fig. 6). It is important to 202 document these effects as ponds are quiet environment favourable to the development of gastropods.

203 $\delta^{13}C_{DIC}$ values of river water are also highly variable (Table 2, Fig. 7). They have very high values in the 204 North Himalaya around 0 ‰ and decrease downstream toward values around -5 to -8 ‰ for the Main Himalayan 205 rivers. In Northern Himalaya where biological activity is limited, sulfuric acid released by sulfur oxidation is a 206 significant source of acid for carbonate dissolution (Galy and France-Lanord, 1999). It produces DIC close to 0 207 ‰ without noticeable contribution of soil organic CO₂ since most carbonates are of marine origin. Downstream 208 $\delta^{13}C_{DIC}$ values become significantly lower (between -5 to -10 ‰) reflecting input of soil derived alkalinity in the 209 river (Galy and France-Lanord, 1999). However, in High Himalaya, hot springs enriched in alkalinity derived 210 from outgassing of metamorphic CO₂ towards surface contribute to maintain relatively high $\delta^{13}C_{DIC}$. Due to carbonate precipitation and CO₂ outgassing, these springs have very high $\delta^{13}C_{DIC}$ up to +15 ‰ and, when mixed 211 212 with river water, tend to increase their $\delta^{13}C_{DIC}$. Altogether, about 10 % of the riverine DIC in Himalaya could be 213 derived from thermal spring activity (Evans et al., 2004). Siwaliks drainage basins have lower δ^{13} C values 214 around -8 to -10 %. The main Himalayan tributaries of the Ganga (Gandak and Kosi) have $\delta^{13}C_{DIC}$ values around 215 -7 to -9 ‰. In the Ganga plain, the Ganga varies from relatively high values in the West (-3 to -6 ‰) to more 216 depleted values around -6 to -10 % downstream under the combined influence of (1) Himalayan river input, (2) 217 increase of silicate weathering in the soils of the floodplain and (3) increased plant productivity in the eastern 218 part of the Gangetic plain.

Except for a few cases, there is a systematic difference between monsoon and dry season waters, the latter showing higher $\delta^{13}C_{DIC}$ (Table 2). This difference varies between 0 and 5 ‰ and derives from complex controls between origin of water (Himalayan vs. plain) and time of residence of water in soils. It is noticed that the variability is relatively large in Bangladesh (Fig 8). The Ganga $\delta^{13}C_{DIC}$ values during the monsoon vary from -10 to -7.3 ‰. $\delta^{13}C_{DIC}$ in the Ganga are well correlated with $\delta^{18}O$ of water with low $\delta^{13}C_{DIC}$ being associated with low $\delta^{18}O_W$. The latter reflects higher contribution of Himalayan waters.

225

226 5.2 Isotopic composition of aragonite shells

227

All isotopic data are given in table 3 and summarized in figures 4 and 7 in the form of histograms for different geographical environments. Water isotopic compositions are compared to shell aragonite composition. For oxygen, isotopic compositions of water relative to V-SMOW are compared to aragonite composition relative to PDB.

232

233 5.2.1. Bulk oxygen isotopic composition of shells

234

235 δ^{18} O values of bulk shells vary between -15 and -5 ‰ for running water environment. The lowest value 236 of -15.2 ‰ is associated with low δ^{18} O waters from North Himalaya. Samples from ponds display higher values 237 between -8 and +3 ‰ that are related to ¹⁸O enrichment by evaporation in closed system environment. In discussing this data set we define three groups based on the characteristic of the river water isotopic composition. Foothills samples belong to local watershed in the Lesser Himalaya and Siwaliks where waters are characterized by marked seasonality. The Main Himalayan rivers are made up of the samples from the Karnali-Ghaghara, Narayani-Gandak and Kosi from the foothills to their confluence with the Ganga. Their $\delta^{18}O_W$ values are relatively similar and stable throughout the seasons. The third group consists of main Ganga samples for which waters have higher and more variable $\delta^{18}O_W$ than Main Himalayan rivers (Fig. 3b). Data of $\delta^{18}O_{Ara}$ for these three groups are represented in the form of histograms in figure 4.

245 Foothills gastropods show a clear unimodal distribution between -10 and -6 ‰ and centered on -8 ‰. 246 Main Himalayan river gastropods have $\delta^{18}O_{Ara}$ values uniformly distributed between -12 and -5 ∞ . In contrast to 247 foothills samples, this range is greater than and encompasses their host waters ($\delta^{18}O_W = -10$ to -6 %). Fourteen 248 samples representing three species Bellamya bengalensis, Digoniostoma textum and Indoplanorbis sp. have been 249 taken at the same location on the Ghaghara bank. All of them show higher variability than the whole dataset of 250 the Main Himalayan rivers. No significant difference occurs among the species Bellamya bengalensis, 251 Digoniostoma textum and Indoplanorbis sp. For the Main Ganga stream, most samples cluster between -8 and -5 252 ‰ and only few samples have lower values around -9 ‰. Ten Bellamya bengalensis specimens sampled on the 253 Ganga at Barauni (BR-316) are quite homogeneous between -8.1 and -6 %. Altogether, the average $\delta^{18}O_{Ara}$ for the 254 Ganga is -6.4 % (σ =1.0), which is significantly higher than that of Main Himalayan rivers at -8.8 % (σ =2.3) or 255 foothills rivers at -7.6 % (σ =1.1). The Gomti river which is draining only the plain, shows values very similar to 256 those of the main Ganga stream with an average value of -7.0 % ($\sigma=1.0$). In the plain, samples from ponds display 257 highly variable $\delta^{18}O_{Ara}$ values from -8 % up to +3 %. Low values are in the range of river values whereas high 258 values show clear effect of ¹⁸O enrichment due to evaporation of closed water bodies. In the range, samples from 259 the Phewa Lake (Pokhara) which is not significantly evaporated have homogeneous compositions with an average 260 $\delta^{18}O_{Ara}$ at -8.6 % (σ =0.8). The few samples collected in North Himalayan rivers show the lowest $\delta^{18}O_{Ara}$ between 261 -15 and -8 % consistent with the lower composition of the host waters.

262 263

5.2.2. Carbon isotopic composition of shells

264

Except one sample from North Himalaya, all $\delta^{13}C_{Ara}$ of shell samples collected from rivers are between -13 and -4 %. The average $\delta^{13}C_{Ara}$ is -7.6 % with a standard deviation of 2.0, which shows that the overall variability is low. The highest values are observed in the western Ganga and the rivers with dominant plain input (Gomti and Rapti). On the contrary, the lowest values are observed in the foothills rivers. This group is the only one that significantly 269 differs from the others with an average composition of -9.7 ‰ (σ =2.1). All other groups have average $\delta^{13}C_{Ara}$ between -7.7 and -6.6 ∞ . For all groups analysed, we observe no relationship between $\delta^{18}O_{Ara}$ and $\delta^{13}C_{Ara}$. 270 271 272 5.2.3 Intra-shell compositions 273 274 We analysed four samples to document intra-shell isotopic variations due to seasonal effect during 275 growth. Such variations have been reported for fossil samples of the Ganga plain (Sharma et al, 2004) and of the 276 Siwaliks (Dettman et al. 2001). Data are listed in table 4 and presented in figures 9, 10a and 10b. Both molluscs 277 from the plain (BR-316-10 from the Ganga and BR 337-3 from the Gandak) and bivalve (Btw-2 cor) from the 278 Tinau khola foothills river show marked variations with increasing $\delta^{18}O_{Ara}$ during shell growth. For these samples 279 the amplitude of the increase is about 3 %. The fact that $\delta^{18}O_{Ara}$ simply increases and does not return to more 280 negative values suggests that these specimens lived for only one season. Another sample from a foothills river 281 (Chit 1) shows only limited variation of about 1 ∞ . $\delta^{13}C_{Ara}$ values are rather stable and independent of $\delta^{18}O_{Ara}$ 282 with values around -8 ‰ for both BR-316-10 and Chit-1, and -11 ‰ for Btw-2 cor. 283 284 6. Discussion 285 286 6.1 Oxygen isotope fractionation between biogenic carbonate and water 287 288 Stable oxygen isotopic composition of biogenic carbonate is controlled by both temperature and isotopic 289 composition of environmental water during shell accretion (e.g. Epstein et al., 1953). The measured δ^{18} O values 290 of mollusc shells and water and ambient temperature of water are examined to oxygen isotope equilibrium 291 fractionation between carbonate and water. We used the fractionation-temperature relationship of Dettman et al. 292 (1999) that is based on calibration from Grossman and Ku (1986): 293 1000 ln α = (2.559*10⁶/T²)+0.715 294 where T is the temperature of water in $^{\circ}$ K and α is the fractionation coefficient between water (w) and aragonite 295 (Ara). The analysis of $\delta^{18}O_W$ - $\delta^{18}O_{Ara}$ relationship ideally requires a detailed record of $\delta^{18}O_W$ and temperature 296 variations, which is not available for most settings studied here. We calculated $\delta^{18}O_{Ara}$ from $\delta^{18}O_W$ for the 297 298 different main settings that we sampled (Bangladesh Ganga, Central Ganga plain, Main Himalayan rivers,

299 foothills rivers). For this purpose, we used all $\delta^{18}O_W$ data available (Table 2 and Ramesh and Sarin, 1992). For 300 the data of Ramesh and Sarin (1992), no temperatures were available and we used estimates based on standard 301 seasonal temperatures. Figure 11 shows that the Ganga is expected to generate aragonite with marked seasonal 302 change in δ^{18} O at least in the Central Ganga plain area where there is a potential variation of ~4 ‰ between the 303 winter and the monsoon seasons. The main Himalayan rivers show lower amplitude than the Ganga as expected 304 from the relative insensitivity of their $\delta^{18}O_w$. From this limited data set, no significant difference is expected 305 among these rivers. The Gandak and Kosi appear very similar and the Ghaghara is systematically higher than its 306 two eastern analogs. Foothills rivers are expected to show the highest seasonal contrast in δ^{18} O with 6 to 7 ‰ 307 between April and the monsoon.

308

309 6.1.1 Intra-shell data

310

311 Bellamya bengalensis sample BR 316-10 from the Eastern Ganga shows a clear evolution from the apex around -10 % to -7 % towards the aperture (Fig. 9). Comparing these values with the model $\delta^{18}O_{Ara}$ for Ganga 312 313 (Fig 11), it appears that the lowest $\delta^{18}O_{Ara}$ of the apex is close to the expected value in the monsoon period. It 314 would imply that the increase in $\delta^{18}O_{Ara}$ up to -7 % corresponds to the subsequent autumn season. The measured 315 amplitude is however lower than the calculated one and winter composition as high as -4 ‰ is not observed in 316 this sample. It is to be noted that because of the shell shape, the apex that records the monsoon low $\delta^{18}O_{Ara}$ value 317 represents only a minor proportion of the total shell. As a consequence, the bulk composition is controlled by the 318 autumn aragonite and is around -7.5 %.

319 The articulated bivalve Corbicula sp (Btw-2 cor) sampled from shore sediments of the foothills river (Tinau Khola) shows lower $\delta^{18}O_{Ara}$ value (Fig. 10b), which is slightly higher than the minimum $\delta^{18}O_{Ara}$ values 320 321 calculated for the monsoon in foothills rivers. The overall variability in $\delta^{18}O_{Ara}$ shown by the mollusc is 2.8 ‰, 322 which is lower than the 5-6 ‰ range calculated for foothills rivers. This may reflect a lifespan shorter than the 323 whole year as suggested by the lack of reverse trend of the growth record. Integrating effect of growth may also 324 tend to blur the effective ambient water variability. For the gastropod Brotia sp. (Fig. 10a) sampled from the 325 foothills Rapti river (Chit 1), the recorded $\delta^{18}O_{Ara}$ values around -8 ‰ are incompatible with the monsoon period 326 in foothills rivers and slightly lower than the range calculated for the winter period. They could reflect growth 327 during the warm period prior to the monsoon.

328

330

Bulk shell data do not allow a detailed analysis of water to carbonate relationship because rivers are seasonally variable and bulk analyses integrate a specific intra-shell variability. Therefore we will analyse each setting separately according to its own characteristics.

In environments where $\delta^{18}O_W$ is relatively stable such as the Phewa Lake (Pokhara) and the Gomti River in the floodplain, $\delta^{18}O_{Ara}$ of shells show limited variability around -8.6 ‰ ± 1 and -7.0 ‰ ± 1 respectively. Based on aragonite-water fractionation of Dettman et al. (1999) and on the average $\delta^{18}O_W$ value, we calculate an apparent temperature of precipitation between 20 and 30 °C which corresponds to major part of the seasonal range of temperatures in these two sites (Fig. 12).

In other environments, δ^{18} O values of rivers are more variable and the comparison of water and shell δ^{18} O values highlights some characteristics of the different groups (Fig 4). For a given zone, we compare the set of shell data to the δ^{18} O_w values and average temperature of waters at different seasons. Winter temperatures are around 15-20 °C in rivers of foothills and floodplain. For these temperatures, aragonite-water fractionation coefficient is between 1.031 and 1.032 implying that δ^{18} O^{PDB}_{Ara} is equal to δ^{18} O^{SMOW}_W or 1 ‰ lower. Premonsoon and monsoon temperatures are very high around 25-32 °C (aragonite-water fractionation coefficient between 1.028 and 1.030), which leads to δ^{18} O^{PDB}_{Ara} being 1 to 2 ‰ lower than δ^{18} O^{SMOW}_{water}.

For samples from foothills rivers, $\delta^{18}O_{Ara}$ are relatively homogeneous around -7 ‰ which is compatible with winter and pre-monsoon waters and conditions. Monsoon waters in these watersheds have significantly depleted compositions which should lead to shells with compositions around -11 to -13 ‰ (Fig. 11). Monsoon compositions are therefore not recorded or represent only a minor proportion of these shells. This could be similar to what is observed for intra-shell variability in sample BR-316-10 where only a small fraction of the shell records monsoon composition.

The group of Main Himalayan rivers shows $\delta^{18}O_W$ values between -10 and -6 ‰. Using a temperature of 20 °C during winter, and 30 °C during the warm season and monsoon, $\delta^{18}O_{Ara}$ values of the shells should be between -10 to -8 ‰ during winter and -13 to -10 ‰ during monsoon (Fig. 11). Nineteen samples out of twentyfive are compatible with these ranges of values. More significantly, fifty percent of bulk gastropod data have $\delta^{18}O$ values lower than -10 ‰, implying that for these samples, most of the aragonite shell was generated during the monsoon period. Six samples have $\delta^{18}O$ higher than -8 ‰, which are incompatible with any measured range of waters composition and temperatures. While we have no satisfying explanation for these samples, the most 359 plausible one is that they correspond to shells which grew in shallow pools near a riverside which were subject to 360 isotopic enrichment by evaporation. Such shells could then have been transported back in the main river during 361 the high flow of the monsoon.

Ganga samples have bulk $\delta^{18}O_{Ara}$ that cluster around -6 ‰ which suggests that most of the aragonite has been formed with high $\delta^{18}O$ waters of the Ganga during winter or pre-monsoon period. Most monsoon Ganga waters have low $\delta^{18}O$ due to ¹⁸O depleted monsoon precipitation and Himalayan rivers input. Combined with high temperature in the Gangetic plain these conditions should generate aragonite lower than -9 ‰ which is not observed.

- 367
- 368 6.1.3 Average compositions
- 369

370 One can also compare average compositions of the different geographical groups for both water and 371 shell samples in a $\delta^{18}O_W$ vs. $\delta^{18}O_{Ara}$ diagram (Fig. 12). In such a diagram data should align on equilibrium lines 372 depending on temperature. While variability is rather large for most groups, we observe that different groups 373 tend to align along the 20°C equilibrium line which supports a general compatibility with non monsoon 374 conditions. In the same diagram, data for North Himalayan samples show that they reflect significantly lower 375 temperatures. This comparison underlines the differences existing between shells grown in Main Himalayan 376 rivers on one side and Ganga mainstream, foothills and plain rivers on the other side. Main Himalayan rivers are 377 continuously supplied by ¹⁸O depleted High Himalayan watershed resulting in shells with 1-1.5 ‰ lower average 378 δ^{18} O values than shells from foothills and plain.

379

380 6.2 Carbon isotope fractionation between biogenic carbonate and water

381

382 Gastropods principally uptake carbonate from dissolved inorganic carbon of water to build their shell. 383 Carbon isotopic fractionation between aragonite and HCO_3^- is 2.6 ± 0.6 between 10 and 40°C (Rubinson and 384 Clayton, 1969; Romaneck et al., 1992). Therefore, the $\delta^{13}C$ of aragonite should be at least 2 ‰ higher than that 385 of DIC in ambient river water. An examination of our data set shows that this is not the case for most of our 386 samples (Fig. 7). Overall they have $\delta^{13}C_{Ara}$ equal to or 1 to 2 ‰ lower than that of DIC at sampling site. This is 387 also confirmed by noting that average $\delta^{13}C$ values of the different groups (Fig. 13) are 2 to 3‰ lower than that 388 expected from DIC values of corresponding river waters.

389 The discrepancy between measured and calculated $\delta^{13}C_{Ara}$ could be due to non-representative sampling 390 of DIC. But at least in cases of the Ganga and the Narayani-Gandak, seasonnal cover was sufficient to rule out a 391 possible bias of sampling. A second source of bias is related to the speciation of carbon in water. All samples 392 have pH around 8 ±0.55 implying that most of DIC is present as HCO₃⁻. However, these rivers have total DIC, 393 which is 10 to 15 % in excess of the measured alkalinity (Galy and France-Lanord, 1999). This means that a 394 significant proportion of DIC is present as excess CO₂ with $\delta^{13}C \sim 8$ % lower than that of HCO₃. The effective 395 HCO_3^- is therefore expected to be about 0.5 to 1 ‰ higher than the measured DIC, leading to higher $\delta^{13}C$ values 396 in precipitating aragonite and therefore larger discrepancy with measured $\delta^{13}C_{Ara}$.

397 The difference between the calculated and observed $\delta^{13}C_{Ara}$ values is known from earlier studies and is 398 commonly explained by the incorporation of metabolic CO₂ from respiratory sources (e.g. Michener and Shell, 399 1994; Dettman et al., 1999; Aucour et al., 2003). Such C can be provided by digestion of particulate organic 400 carbon (POC) of land origin or phytoplankton of the river. POC in the Ganga rivers has low δ^{13} C value around -401 22‰ (Aucour et al., in press) and therefore represents a source of low $\delta^{13}C$ CO₂. Phytoplankton $\delta^{13}C$ is still not 402 documented but is likely to be around -30‰ assuming a DIC-phytoplankton fractionation around 22‰. The 403 proportion of inorganic to organic carbon incorporated in the shell is a matter of debate and several estimations 404 have been developed (McConnaughey et al., 1997; Aucour et al. 2003). Following Aucour et al. (2003) about 30 405 to 70% of total carbon should be of metabolic origin in order to explain our observed shell compositions 406 assuming that POC is the only organic source with δ^{13} C of -22‰. Uncertainties are large mostly because each type of site displays a relatively large range of $\delta^{13}C_{DIC}$ and $\delta^{13}C_{Ara}$. These proportions are of course lower if 407 408 phytoplankton is ingested instead of POC.

409 The $\delta^{13}C_{DIC}$ of rivers tends to be lower during the monsoon period with a typical contrast of 2 to 3 %410 between the monsoon and dry season for both Ganga and Main Himalayan Rivers (Fig. 7). This should generate 411 a seasonal trend in the $\delta^{13}C_{Ara}$ of shell that is not observed. The Ganga sample BR 316-10 (Fig. 9) for which intra-shell variation of δ^{18} O is consistent with a monsoon to dry season evolution does not show a parallel trend 412 413 for carbon isotopes. $\delta^{13}C_{Ara}$ of this sample is rather stable around -8 $\% \pm 0.5$. Similarly the Gandak sample BR-414 337-3 does not show any significant change in $\delta^{13}C_{Ara}$ that could reflect the seasonal evolution of $\delta^{13}C_{DIC}$ of this 415 river (5 to -8 ‰). This suggests a complex interplay of changes in the source of organic carbon and its 416 incorporation in the shell over the year. One hypothesis is that the seasonal DIC contrast is counterbalanced by a 417 change of the organic carbon sources. During the monsoon, suspended particles concentrations are very high (1 418 to 5 g/l unpublished data) and POC around -22 ‰ dominates the organic pool. On the contrary, during the dry season, suspended particle concentration decline to 0.1-0.2 g/l. This increases the proportion of phytoplankton relative to POC in the organic carbon pool and could balance the increase in $\delta^{13}C_{DIC}$. Such hypothesis would allow to maintain a relatively constant proportion of organic carbon during the year around 30 to 50 % of the total carbon.

- 423
- 424

4 7. Conclusion and implications for fossil record

The main objective of this study was to determine how oxygen and carbon isotope compositions of mollusc shell can document environmental conditions in the Gangetic plain. For the first time, isotopic characteristics of river water in the Gangetic floodplain have been analysed for their seasonal variability and their relation to the watershed size. This basis allows to determine how shells of freshwater molluscs can record the isotopic compositions of river waters and how far we can relate it to climatic conditions.

430 Two distinct environments for the freshwater molluscs in the Ganga plain are observed. One is related 431 to flowing river and the other is stagnant water mass in isolated ponds. In rivers, average $\delta^{18}O_{Ara}$ values of shells 432 are found compatible with isotopic equilibrium with the waters at a temperature range of 20 to 25 °C. In contrast, 433 δ^{18} O values of shells from stagnant water bodies are highly variable and can reach values as high as +3 ‰ due to 434 the effect of evaporation. This effect has been observed in modern and quaternary lake and ponds of the Gangetic 435 plain (Sharma et al., 2004) as well as in the Mio-Pliocene Siwaliks (Dettman et al., 2001). Overall, river 436 molluses have bulk $\delta^{18}O_{Ara}$ in the range -10 to -6 \%. While one individual specimen may reflect a particular 437 history that appears in disequilibrium with the local river water, the analysis of small population (n>10) shows 438 that average values do reflect the characteristics of the river system. Molluscs from Main Himalayan rivers 439 consistently differ from the other environments surveyed (Ganga, foothills and Plain rivers) in that they have lower $\delta^{18}O_{Ara}$ derived from the lower $\delta^{18}O_W$ of these rivers. In the floodplain, the type of watershed therefore 440 441 plays a significant role in the resulting shell isotopic signal. The difference between the two groups is about 2 %. From the mollusc record of Surai khola Siwaliks, Dettman et al. (2001) derived an increase of river water δ^{18} O 442 443 during the Mio-Pliocene compared to Middle Miocene. Such change from -12/-8 to -8/-6 ‰ may therefore 444 reflect a change in δ^{18} O of precipitation related to climatic evolution as well as a change in the river network.

We also investigated if seasonality information can be derived from the mollusc shells. While the seasonal contrast for δ^{18} O of precipitation in one location can reach as high as 10 ‰ (as we reported for Kathmandu), our record of different river systems shows that the rivers had a strong tendency to average this contrast. Main Himalayan rivers show a small contrast of ~ 3 ‰, whereas small rivers originating in the 449 Himalayan foothills vary by 5 ‰ or more. This shows that, depending on the type of river where the mollusc 450 grows, the information in term of δ^{18} O amplitude can be different under identical climate conditions. A second 451 limitation is related to the recording by the mollusc itself. None of the specimen that we analysed showed pluriannual record that would allow deriving the whole amplitude of δ^{18} O. This suggests that in the fossil record, the 452 453 application of such a tracer will require the analysis of a relatively large number of samples to provide the best 454 specimen. Extreme contrasts are recorded in isolated environments such as ponds. These cannot be used 455 quantitatively to trace past variations of precipitation as there is no control on the extent of evaporation. The minimum $\delta^{18}O_{Ara}$ certainly documents the wet season as stated by Dettman et al. (2001) but it is difficult to know 456 457 how such system is related to the river environment. We suggest therefore that samples that do not present 458 extreme values due to evaporation should be preferred when possible, in order to be sure to trace rivers and not 459 closed bodies of water or ponds.

460 Finally, the carbon isotope composition of shells is controlled by that of DIC and, for a significant 461 proportion, by carbon derived from metabolic processes. The resulting $\delta^{13}C$ of shells is 2-3% lower than 462 predicted by inorganic equilibrium with DIC. Shell aragonite has therefore the potential to trace processes that control the $\delta^{13}C$ of DIC in river water. The evolution of the flora from G to C₄ during the Mio-Pliocene that 463 464 affect the whole Gangetic basin (e.g. Quade et al, 1995) is of course a major event that can be traced. In addition 465 this should increase the δ^{13} C of land derived organic carbon and likely that of phytoplankton. DIC is also 466 controlled by lithologies that are weathered in the watershed and changes in the proportion of carbonate to 467 silicate weathering ratio in the Himalaya should also be detectable. Singh et al. (in press) reported $\delta^{13}C_{DIC}$ for the 468 Brahmaputra and Himalayan tributaries that are 3 to 5 ‰ lower than those of the Ganga or Main Himalayan 469 rivers draining Nepal. This simply reflects the fact that less carbonate rocks are exposed to erosion in Eastern 470 Himalaya. δ^{13} C of shells in the Siwaliks record have therefore the potential to trace long term variation of the 471 occurrence of carbonate rocks in the river drainage.

472 Studies of fossil shells in the sedimentary record have the potential to document river water evolution. 473 One option is to rely on bulk compositions avoiding abnormally high δ^{18} O values that are clearly related to 474 evaporation. It requires also a statistical approach in order to determine average compositions. Because 475 watershed characteristics control part of the isotopic composition of the shell, efforts should be made to derive 476 river type from complementary sedimentological and geochemical characteristics. The second approach relies on 477 the analysis of intra-shell variations. It has clearly the potential to document the intensity of the seasonal contrast

- 478 provided the river environment has been determined. In this case again, the sedimentological context is essential
- 479 to derive climatological implications.

480 Acknowledgements

This research was funded by the ECLIPSE Centre National de la Recherche Scientifique program. The first author is grateful to the French Minister of foreign affairs (MAE) and French Embassy in Kathmandu for providing scholarship to complete his doctorate degree in France. Dr. Sunil K. Singh (from PRL Ahmadabad) is warmly thanked for his continuous support and expertise during sampling in the Gangetic plain. We thank David Dettman and an anonymous reviewer for their very careful and helpful comments.

486

487 **References**

- Abell, P.I., 1985. Oxygen isotope ratios in modern African gastropod shells: a database for paleoclimatology.
 Chem. Geol. (Isot.Geosci.Sect.) 58, 183–193.
- 490 Aucour, A.M., France-Lanord, C., Pedoja, K., Pierson-Wickmann, A.C. and Sheppard S.M.F. Fluxes and sources
- 491 of particulate organic carbon in the Ganga-Brahmaputra river system. Global Biogeochemical Cycle, in
 492 press.
- Aucour, A.M., Sheppard, S.M.F. and Savoye, R., 2003. δ¹³C of fluvial mollusk shells (Rhône River): A proxy
 for dissolved inorganic carbon? Limnol. Oceanogr. 48, 2186-2193.
- Bhattacharya, S.K., Gupta, S.K. and Krishnamurthy, R.V., 1985. Oxygen and hydrogen isotopic ratios in
 groundwaters and river waters from India. Proc. Indian Acad. Sci. (Earth Planet. Sci.) 94(3), 283-295.
- Bhattacharya, S.K., Froehlich, K., Aggarwal, P.K. and Kulkarni, K.M., 2003. Isotopic variation in Indian
 Monsoon precipitation: Records from Bombay and New Delhi. Geophysical Research Letters 30(24),
 11(1)-11(4).
- 500 Dettman, D.R., Matthew, J.K., Quade, J., Ryerson, F.J., Ojha, T.P. and Hamidullah, S., 2001. Seasonal stable 501 isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology 29(1), 31-34.
- 502 Dettman, D.L., Reische, A.K. and Lohamann, C.K., 1999. Controls on the stable isotope composition of seasonal 503 growth bands in aragonitic fresh-water bivalve (unionidae). Geochim. Cosmochim. Acta 63 1049-1057.
- Deuser, W.G. and Degens, E.T., 1967. Carbon isotope fractionation in the system CO₂(gas) CO₂(aqueous) –
 HCO₃⁻(aqueous). Nature 215, 1033-1035.
- 506 DHM, 1998. Hydrological records of Nepal. Ministry of Water Resources, Department of Hydrology and
 507 Meteorology, Kathmandu, Nepal, 264 p.
- 508 DHM, 2002. Precipitation Records of Nepal. Ministry of Water Resources, Department of Hydrology and
 509 Meteorology, Kathmandu, Nepal.

- 510 Epstein, S. and Mayeda, T., 1953. Variation of δ^{18} O content in waters from natural sources. Geochim. 511 Cosmochim. Acta 4, 213–214.
- 512 Epstein, S., Buchsbaum, R., Lowenstam, H. and Urey, H.C., 1953. Revised carbonate-water isotopic 513 temperature scale. Geol. Soc. Am. Bull. 64, 1315-1326.
- 514 Evans, M.J., Derry, L.A. and France-Lanord, C., 2004. Geothermal fluxes of alkalinity in the Narayani river 515 system of central Nepal. Geochemistry, Geophysics and Geosystems 5(8), 1-21.
- 516 Fritz, P., and Poplawski, S., 1974. ¹⁸O and ¹³C in the shells of freshwater mollusks and their environment. Earth
 517 Planet. Sci. Lett. 24, 91–98.
- Gajurel, A.P., France-Lanord, C. and Huyghe, P., 2003. Compositions isotopiques (carbone et oxygène) de
 gastéropodes et bivalves des Siwaliks: Implications paleo- environnementales sur le system himalayen
 depuis le Miocène. TectoClim, UMR USTL-CNRS, Lille, p. 25.
- Galy, A. and France-Lanord, C., 1999. Weathering processes of the in the Ganges-Brahmaputra basin and the
 reverine alkalinity budget. Chem. Geol. 159, 31-60.
- Garzione, C.N, Dettman, D.L., Quade, J., DeCelles, P.G. and Butler, R.F., 2000a. High time on the Tibetan
 Plateau: Paleoelevation of the Thakkhola graben, Nepal. Geology 28(4), 339-342.
- Garzione, C.N, Quade, J., DeCelles, P.G. and English, N.B., 2000b. Predicting palaeoelevation of Tibet and the
 Himalaya from δ¹⁸O vs. altitude gradients in meteoric waters across the Nepal Himalaya. Earth Plan.
 Sci. Let. 183, 215–229.
- 528 Grossman, E.L., and Ku, T.-L., 1986. Oxygen and carbon isotope fractionation in biogenic aragonite:
 529 temperature effects. Chem. Geol., Isot. Geosci. Sect. 59, 59 74.
- Gupta, S., 1997. Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin.
 Geology 25, 11-14.
- Hagen, T., 1969. Reports of the Geological Survey of Nepal. Denkschrift der Schweizerischen Naturforschenden
 Gesellschaft 1, 185 p.
- Jenkins, D.T., Sharma, C.K. and Hassett, J.M., 1987. A stable isotope reconnaissance of groundwater resources
 in the Kathmandu Valley, Nepal. Proceedings of an International Symposium on the use of isotope
 techniques in water resources development organization, IAEA -SM-299/119P, 775-778.
- 537 Kaandorp, R.J.G., Vonhof, H.B., Busto, C.D., Wesselingh, F.P., Ganssen, G.M., Marmól, A.E., Pittman, L.R.
- and van Hinte, J.E., 2003. Seasonal stable isotope variations of the modern Amazonian freshwater
- 539 bivalve *Anodontites trapesialis*. Palaeo geogr. Palaeoclimatol. Palaeoecol. 194, 339-354.

- Klein, R.T., Lohmann, K.C. and Thayer, C.W., 1996. Sr/Ca and ¹³C/¹²C ratios in skeletal calcite of *Mytilus trossulus*: Covariation with metabolic rate, salinity, and carbon isotopic composition of seawater.
 Geochim. Cosmochim. Acta 60(21), 4207-4221.
- 543 Kim, S.T and O'Neil, J.R., 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates.
 544 Geochim. Cosmochim. Acta 61(16), 3461-3475.
- 545 Krishnamurthy, R.V. and Bhattacharya, S.K., 1991. Stable oxygen and hydrogen isotope ratios in shallow 546 ground waters from India and a study of the role of evapotranspiration in the Indian monsoon. In
- 547 Taylor, H., O'Neil, J. and Kaplan, I., (eds.), Isotope Geochemistry: a Tribute to Samuel Epstein.
- 548 Geochemical Society: Texas, Special Publication, 187–193.
- Lécuyer, C., Reynard, B. and Martineau, F., 2004. Stable isotope fractionation between mollusc shells and
 marine waters from Martinique Island. Chem. Geol. 213(4), 293-305.
- Lowenstam, A. and Epstein, S., 1954. Paleotemperatures of the Post-Aptian Cretaceous as determined by the oxygen isotope method. J. Geol. 62, 207 – 248.
- Margosian, A., Tan, F.C., Cai, D., and Mann, K.H., 1987. Sea-water temperature records from stable isotope
 profiles in the shell of Modiolus modiolus. Estuar. Coast. Shelf Sci. 25, 81 89.
- McCrea, J.M., 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18,
 849-857.
- Michener, R.H. and Shell, D.M., 1994. Stable isotope ratios as tracers in marine aquatic food webs. In: Lajtha, K.
 and Michener, R.H. (eds), Stable Isotopes in Ecology and Environmental Studies. Blackwell Scientific
 Publications, 138–157.
- Miller, K.G., Fairbanks, R.G., and Mountain, G.S., 1987. Tertiary oxygen isotope synthesis, sea level history,
 and continental margin erosion. Paleoceanography 2, 1 19.
- Nesemann, H., Korniushin, A., Khanal, S. and Sharma, S., 2001. Molluscs of the families Sphaeriidae and
 Corbiculidae (Bivalvia, Veneroidea) of Nepal (Himalayan midmountains and terai), their anatomy and
 affinities. Acta Conchyliorum, Wien und Ludwigsburg 4, 1-33.
- Quade, J., Cater, J.M.L., Ojha, T.P., Adam, J. and Harrison, T.M., 1995. Late Miocene environmental change in
 Nepal and the northern Indian subcontinent: Stable isotopic evidence from paleosols. Geol. Soc. Am.
 Bull. 107, 1381-1397.
- Ramesh, R. and Sarin, M.M., 1992. Stable isotope study of the Ganga (Ganges) river system. Jour. Hydrol. 139,
 49–62.

- Romanek, S.C., Grossman, E.L. and Morse, W.J., 1992. Carbon isotopic fractionations in synthetic aragonite and
 calcite: effects of temperature and precipitation rate. Geochim. Cosmochim . Acta 56, 419-430.
- 572 Rao, K.L., 1979. India's water wealth. Orient Longman limited, New Delhi, 267 pp.
- 573 Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R., 1993. Isotopic patterns in modern global precipitation.
- 574 In: Swart, P., Lohmann, K.C., McKenzie, J. and Savin, S. (eds), Climate Change in Continental Isotope
 575 Records. Am. Geophys. Union Monogr. 78, 1-36.
- 576 Rubinson, M. and Clayton, R.N., 1969. Carbon-13 fractionation between aragonite and water. Geochim.
 577 Cosmochim. Acta 33, 997-1002.
- Seeber, L. and Gornitz, V., 1983. River profiles along the Himalayan arc as indicators of active tectonics.
 Tectonophysics 92, 335-367.
- 580 Shackleton, N.J., 1986. Paleogene stable isotope events. Palaeo geogr. Palaeoclimatol. Palaeoecol. 57, 91 102.
- 581 Sharma, S., Joachimski, M., Sharma, M., Tobschall, H.J., Singh, I.B., Sharma, C., Chauhan, M.S. and
- 582 Morgenroth, G., 2004. Late Glacial and Holocene environmental changes in Ganga plain, northern
 583 India. Quat. Sci. Rev. 23, 139 153.
- Siegel, D.I. and Jenkins, D.T., 1987. Isotope analysis of groundwater flow systems in a wet alluvial fan, southern
 Nepal. Proceedings of an International Symposium on the use of isotope techniques in water resources
 development organization IAEA -SM-299/118, 475-482.
- 587 Singh, S.K., Sarin, M.M. and France-Lanord, C., in press. Chemical Erosion in the Eastern Himalaya: Major ion 588 composition of the Brahmaputra and δ^{13} C of dissolved inorganic carbon. Geochem. Cosmochem. Acta.
- 589 Sinha, R. and Friend, P.F., 1994. River systems and their sediment flux, Indo-Gangetic plains, Northern Bihar,
 590 India. Sedimentology 41, 825-845.
- 591 Subba Rao, N.V., 1989. Handbook of freshwater mollusks of India. pub. Zool. Sur. India, Calcutta, 289 P.
- Subba, B.R. and Ghosh, T.P., 2000. Some freshwater mollusks from eastern and central Nepal. J. Bombay Nat.
 His. Soc. 97(3), 452-455.
- Weidman, C.R., Jones, G.A., and Lohmann, K.C., 1994. The long-lived mollusk Arctica islandica: a new
 paleoceanographic tool for the recons truction of bottom temperatures for the continental shelves of the
 North Atlantic Ocean. J. Geophys. Res. 99, 18305 18314.
- 597 Wells, N.A., and Dorr, Jr.J.A., 1987. Shifting of the Kosi River, northern India. Geology 15, 204-207.
- Woodruff, F., Savin, S., and Douglas, R.G., 1981. Miocene stable isotope record: a detailed deep Pacific Ocean
 study and its paleoclimatic implications. Science 212, 665 668.

603	Figure captions
604	
605	Figure 1: Sample location along the Main Ganga River, Main Himalayan rivers, plain river, in lakes and ponds
606	in Ganga plain and mountain area.
607	
608	Figure 2: Photomicrographs of some collected fauna. The scale bar is 1 cm
609	
610	Figure 3: $\delta^{18}O_W$ values of water samples as a function of: (3a) sampling elevation for the High Himalayan
611	rivers, Kathmandu Valley rivers, foothills and Main Himalayan rivers and Phewa Lake, and (3 b) longitude for
612	the Main Ganga stream in the Ganga plain.
613	
614	Figure 4: Histograms showing $\delta^{18}O_W$ values of rivers and pond waters for monsoon (June to September) and dry
615	seasons (above) and $\delta^{18}O_{Ara}$ values of mollusc shells sampled in these respective water environments (below).
616	
617	Figure 5 : Day to day record of δ^{18} O values of rain water in Kathmandu (Nepal) during the year 2001-02. O and
618	H isotopic compositions are listed in appendix 3. Filled circles correspond to measured $\delta^{18}O$ data. Open dots
619	correspond to calculated δ^{18} O values from measured δ D data using our determination of local meteoric water line
620	$\delta D = 8.10 \ \delta^{18}O + 12.3$ (Fig. 6).
621	
622	Figure 6: δD vs. $\delta^{18}O$ plot for river water samples listed in table 2. MWL represents the global meteoric water
623	line ($\delta D = 8 \delta^{18} O + 10$). Samples include river data from Jenkins et al., (1987); Ramesh and Sarin, (1992);
624	Garzione et al., (2000b).
625	
626	Figure 7: Histograms showing $\delta^{13}C_{DIC}$ values of river waters for foothills rivers, Main Himalayan rivers and the
627	Main Ganga River (above) and $\delta^{13}C_{Ara}$ values of mollusc shells sampled from these respective water
628	environments (below). Arrows indicate average $\delta^{13}C_{DIC}$ and $\delta^{13}C_{Ara}$ values.
629	
630	Figure 8 : $\delta^{13}C_{DIC}$ vs. longitude for the Main Ganga stream in the Ganga plain.
631	

Figure 9: Ontogenic evolution of C and O stable isotopes for the shell of *Bellamya Bengalensis* (BR 316-10)
sampled from eastern Main Ganga River.

634

- Figure 10a: Ontogenic evolution of C and O stable isotopes for the shell of *Bellamya Bengalensis* (BR 337-3)
 sampled from the Ghaghara (Narayani) and for the shell of *Brotia* sp. (Chit 1) from the Rapti River.
- 637
- Figure 10b Ontogenic evolution of C and O stable isotopes for the shell of *Corbicula* sp. (Btw-2 cor) sampled
 from the Tinau Khola.

640

641 **Figure 11**: Calculated $\delta^{18}O_{Ara}$ derived from river water compositions and temperature condition for different 642 river water environments and seasons. The calculation assumes isotopic equilibrium with water and aragonite-643 water fractionation of Dettman et al (1999).

644

Figure 12: Plot of $\delta^{18}O_{Ara}$ shell's average value vs. $\delta^{18}O_W$ water's average value for foothills rivers, Main Himalayan rivers, plain rivers and the Main Ganga River. Theoretical ambient temperature lines are drawn according to the fractionation equation of Grossman and Ku (1986) modified by Dettman et al. (1999). The average values for waters ($\delta^{18}O_W$) and shells ($\delta^{18}O_{Ara}$) are calculated using the data of tables 2 and 3 respectively, for each setting.

650

Figure 13: Plot of $\delta^{13}C_{Ara}$ shell's average value vs. $\delta^{13}C_{DIC}$ water's average value for foothills rivers, Main Himalayan rivers, plain rivers and the Main Ganga River. The average values for waters ($\delta^{13}C_{DIC}$) and shells ($\delta^{18}O_{Ara}$) are calculated using the data of tables 2 and 3 respectively, for each setting.

654

655 Table captions

656

657 **Table 1a.** Bulk shell δ^{18} O and δ^{3} C data for three different treatments of the same specimen *Bellamya* 658 *bengalensis* (Bakai KR1).

- 659 **Table 1b.** δ^{18} O and δ^{13} C data for standard aragonite Maroc IKON.
- 660 **Table 2.** Hydrogen, oxygen and carbon isotopic data for rivers and pond waters from North Himalaya, foothills,
- and Ganga plain with sampling elevation and physical properties of waters.
- 662 Table 3. Oxygen and carbon isotopic data for the modern mollusc shells from North Himalaya, Phewa Lake,
- 663 foothills rivers, rivers in the Ganga plain and ponds with sampling elevation.
- 664 Table 4. Intra-shell δ^{18} O and δ^{13} C data for modern freshwater mollusc shells from foothills rivers, Main
- 665 Himalayan rivers and Main Ganga River.
- 666 Appendix 1. Location of river and pond water samples in Himalaya and Ganga plain.
- 667 Appendix 2. Location of modern shell samples collected from rivers and ponds.
- 668 Appendix 3. Hydrogen and oxygen isotopic data of the meteoric waters collected between 2001 and 2002 at
- 669 Subidhanagar in Kathmandu (27° 41' 6"; 85° 20' 59" and 1300 m).

Fig.1 Gajurel et al.

Bellamya bengalensis

Brotia sp.

Bithynia sp.

Lymnaeinae sp.

Indoplanorbis exustus

Lymnaea acuminata

Gyraulus sp.

Lamellidens sp.

Corbicula sp.

Fig.2 Gajurel et al.

Fig 3 Gajurel et al.

Fig 3 Gajurel et al.

Fig 5 Gajurel et al.

Fig6 Gajurel et al.

Fig 7 Gajurel et al.

Fig. 8 Gajurel et al.

Fig 9 Gajurel et al.

Fig 10a Gajurel et al.

Fig 10b Gajurel et al.

Fig 11 Gajurel et al.

Fig.12 Edited Gajurel et al.

Fig 13 Edited Gajurel et al. (WPL)

Table 1a

Assays on Whole	δ ^{ľ3} C	δ ¹⁸ Ο
shell	(PDB)	(VSMOW)
	‰	‰
No treatment	-5.8	28.7
No treatment	-5.8	28.7
370°C/1hr	-5.9	28.4
370°C/1hr	-5.8	28.6
370°C/1hr	-5.8	28.4
Plasma	-5.9	28.5
Plasma	-5.8	28.5
Plasma	-5.8	28.5
Mean	-5.8	28.6
Standard error	0.016	0.042
Standard deviation	0.02	0.12

Table 1b

Assays on Whole	δ ^{I3} C	δ ¹⁸ Ο
sample	(PDB) ‰	(VSMOW)
No treatment	7.3	22.8
No treatment	7.3	22.9
No treatment	7.3	22.8
370°C/1hr	7.3	22.8
370°C/1hr	7.3	22.8
370°C/1hr	7.2	22.6
Plasma	7.3	22.8
Plasma	7.3	25.1
Mean	7.3	23.1
Standard error	0.013	0.291
Standard deviation	0.04	0.82

Т	`ah	le	2
-	uu		-

						Temp erature	$\delta^{18}O$	δD	$\delta^{13}C_{DIC}$	[C0 ₂]
a 1."	River /	.			pН		(SMOW)	(SMOW)	(PDB)	μ mol/l
Sample#	tributary	Location	Date	Elevation (m)		(°C)	‰	‰	‰	
North Hima	alaya									
LO 63	Tsarang Khola	Tsarang	May.20.90	3920		4.5	-18.8	-141.1	-0.3*	2770
LO 25	Nangyal Khola	Lo Manthang	May.19.90	3695			-17.3	-128.4	-6.7*	2080
Jomw 1	Kagbeni Khola	Muktinath	Mar.14.04	3576	7.5	7	-15.9	-108.2	na	
NH 133	Kali Gandaki	Lo Mantang	Apr.29.91	3575	7.8*	8.4	-15.9	-113.4	-3.2*	2513
LO 49	Kali Gandaki	Lo Manthang	May.19.89	3550		5	-16.2	-121.7	1.3*	2900
LO 15	Ghami Khola	Ghami	May.18.89	3450		6.3	-18.3	-133.6	-4.3*	2800
LO 23	Tsarang Khola	Tsarang	May.18.89	3430			-17.2	-130.6	1.4*	3960
LO 96	Narsing khola	Chhuksang	May.23.89	2900		10	-14.3	-107.0	3.9*	2450
NAG 21	Kali Gandaki	Kagbeni	Nov.25.95	2790	8.5*	3.8	-17.5	-132.5	0.4*	2567
Jomw 3	Terrace Kali	Jomsom	Mar.15.04	2750	8.1	9.6	-14.8	-104.0	na	
Jomw 4	Terrace Kali	Jomsom	Mar.15.04	2750		9.5	-12.9	-94.7	na	
99kg22	unnamed	Jomsom		2750			-15.7	-115	na	
Jomgw-7	unnamed	Jomsom	May.25.04	2731		15	-11.7	-85.5	na	
Jomw 5	Syan Khola	Jomsom	Mar.16.04	2730		15	-12.4	-83.3	na	
NH 147	Kali gandaki	Jomsom	May.5.91	2675	8.4*	8.4	-15.5	-113.4	0.3*	2513
LO 99	Thini khola	Kali	May.25.89	2650			-13.7	-92.1	-2.1*	2490
LO 103	Marpha khola	Marpha	May.25.89	2650			-8.6	-50.7	-5.0*	110
LO 101	Kali Gandaki	Marpha	May.25.89	2630		10	-14.2	-102.3	-1.4*	2340
NAG 30	Kali Gandaki	Chairogaon	Dec.1.95	2626	9.3*	6.3	-16.8	-124.7	0.3*	3093
99kg23	unnamed	U		2600			-11.2	-76	na	
NAG 32	Kali Gandaki	Tukuche	Dec.2.95	2530	8.8*	2.0	-16.4	-120.5	0.1*	2687
99kg24	Yamkin Khola			2500			-13.4	-92		
MO 500	Kali Gandaki	Khobang	Jul.25.94	2490	8		-17.7	-129.1	-1.1	1370
Jomw 6	Larjung Khola	Larjung	Mar.17.04	2460		14.5	-10.0	-63.8	na	
99kg26	Lariung Khola	Lariung		2440			-12.2	-84		
Foothills	· j · · · · ·	- J- C								
Gokarna	Bagmati	Kathmandu	May.95	1360		15	-7.0	-44.8	-11.7	565
17^{J}	Bagmati	Gokarna	Aug-Sept 86	1315			-10	-70.6	na	
19 ^J	Bishnumati	Balaju	Aug-Sept 86	1301			-9.1	-67	na	
22 ^J	Manohara	Lohakanthali	Aug-Sept 86	1297			-8.6	-65.6	na	

18 ^J	Bagmati	Minbhawan	Aug-Sept 86	1292			-10	-68	na	
23 ^J	Hanumante	Thimi	Aug-Sept 86	1291			-7.4	-594	na	
LO 402	Bishnumati	Teku		1285			-9.4		na	2613
20 ^J	Bishnumati	Teku	Aug-Sept 86	1285			-8.8	-68.5	na	
LO 400	Bagmati	Patan		1280			-8.8		na	
LO 401	Bagmati	Thapathali		1278			-8.7		na	
21 ^J	Nakhu	Nakhu	Aug-Sept 86	1275			-10.1	-73	na	
16 ^J	Bagmati	Chobhar	Aug-Sept 86	1270			-10.1	-73.5	na	
NAG 3	Bijayapur	Kundahar	Nov.11.95	870	8.1	20.6	-10	-68.6	-10.3	1750
MO 311	Andhi		Jul.8.98	850	8.2	29	-9.2	-63.4	na	980
MO 524	Phewa Lake	Pokhara	Jul.28.94	798			-8.2	-53.4	-8.5	380
APL 1	Phewa Lake	Pokhara	Jan.18.04	798		17.5	-8.5	-55.9	na	
PHL 1	Phewa Lake	Pokhara	Jan.18.04	798	7.5	17	-6.4	-43.0	na	
99kg49	unnamed			820			-9.2	-67	na	
NH 3	Surai khola	Tatopani	Mar.10.91	631	8.5*	18	-7.8	-39.0	-8.6*	6514
Btw-2	Tinau Khola	Charchare	Jan.6.01	559			-8.1		na	
99kg51	unnamed	Kerabari		480			-8.1	-60	na	
MO 327	Ransing Khola		Jul.8.94	385	8.4		-10.9	-78.0	-10.6	2990
94-03	Rangsing Khola	Charang	Mar.5.94	385			-5.5	-36.7	na	
BakaiKR-3	Bakiya Khola	Chatiwan	Feb.17.01	265	7.2		-6.4		na	
94-18	Bankas Khola		Mar.29.94	250			-5.9	-39.3	na	
MO 321	Kweli Khola		Jul.9.98	250	8.2		-9.1	-64.9	-8.8	2775
94-02	Surai Khola		Mar.4.94	240			-6.1	-40.4	na	
MO 325	Surai Khola		Jul.8.94	240	8.4		-10.1	-71.1	-8	3630
94-01	Chor Khola		Mar.2.94	220			-6.8	-44.2	na	
94-17	Kachali Khola		Mar.29.94	220			-5.8	-43.5	na	
94-13	Gadel Khola	Palait	Mar.23.94	220			-6	-43.3	na	
94-14	Basunti Khola	Bashanti	Mar.24.94	220			-6.5	-42.5	na	
MO 317	Tinau Khola	Butwal	Jul.7.94	180	8.4		-11.4	-80.5	-8.5*	1500
Main Hima	layan rivers									
LO 308	Narayani	Nayaran Ghat	Jun.9.93	190		26	-8.1	-50.6	-8.0*	1679
NAG 49	Narayani	Nayaran Ghat	Dec.11.95	190	8.4*	18.8		-69.5	-7.1*	2207
MO 330	Narayani	Nayaran Ghat	Jul.9.94	190	8.4		-10.9	-75.3	-7.6*	1430
NH 1	Narayani	Nayaran Ghat	Mar.9.91	190	8.5*	20	-10.7	-69.5	-5.6*	2320
PB 53	Narayani	Nayaran Ghat	Jul. 11.05	190					-7.9	1600

PB 81	Karnali	Chisopani	Jul. 15.05	190					-7.0	1480
8 ^R	Ghaghara	Ayodhya	Mar.82	98			-8.4	-54	na	
8 ^R	Ghaghara	Ayodhya	Sept.82	98			-9.4	-70	na	
BR 354	Ghaghara	Ayodhyya	May.14.00	98	8.2	29.5	-7.6	-51.8	-6.1	3170
Kosi-1	Kosi	Kosi Barrage	May.1.04	84			-9.6	-63.4	na	
Kosi-2	Kosi	Kosi Barrage	May.21.04	84			-9.7	-63.5	na	
BR 363	Rapti	Gorakhpur	May.14.00	81	8.3	31.8	-3.0	-22.8	-6.30	4040
BR 334	Gandak	Barauli	May.10.00	67	8.1	31.7	-8.2	-53.3	-6.2	2680
BR 342	Ghaghara	Revelganj	May.11.00	56	8.2	30.4	-6.4	-46.1	-4.8	3480
18 ^R	Gandak	Hajipur	Mar.82	45			-8.9	-63	na	
18 ^R	Gandak	Hajipur	Sept.82	45			-10.2	-66	na	
BR 311	Gandak	Hajipur	May.5.00	45	8.0		-7.9	-51.3	-7	2280
BR 115	Gandak	Hajipur	Aug.7.01	45			-9.8	-66.8	-8.2	
PB 71	Kosi	Hydropower st.	Jul. 13.05	180					-10.2	780
BR 327	Kosi	Dumari Ghat	May.9.00	38	7.9	31.4	-7.2	-47.1	-7.3	1910
BR 101	Sapt Kosi		Aug.5.01	38			-10.7	-74.9	-9.2	
Plain river			C							
BR 134	Gomti		Aug.9.01	74			-7.4		na	
BR 375	Gomti		May.15.00	68	8.6	34.0	-6.3	-46.3	-4.7	4290
BR 135	Gomti		Aug.9.01		8.2		-6.4	-48.7	-8.4	
14 ^R	Gomti	Dobni	Mar.82				-7.1	-48	na	
Main Ganga	a River									
BR 350	Ganga	Allahabad	May.13.00	103	8.5		-3.6	-30.9	-2.6	3810
11 ^R	Ganga	Allahabad	Mar.82	103				-39	na	
11 ^R	Ganga	Allahabad	Sept.82	103				-69	na	
BR 388	Ganga	Varanasi Ghat	May.16.00	75	8.3	32.1	-7.6	-31.4	-4.1	4800
BR 141	Ganga	Varanasi	Aug.10.01	75	8.3		-6.2	-50.7	-8.9	
13 ^R	Ganga	Varanasi	Dec.82	75				-39	na	
13 ^R	Ganga	Varanasi	Mar.82	75				-55	na	
BR 126	Ganga	Patna	Aug.8.01	45			-6.8	-46	-9.1	
17 ^R	Ganga	Patna	Dec.82	45				-41	na	
16 ^R	Ganga	Patna	Mar.82	45				-35	na	
17 ^R	Ganga	Patna	Mar.82	45			-3.8	-39	na	
17 ^R	Ganga	Patna	Sept.82	45			-10.6	-73	na	
BR 309	Ganga	Patna Ghat	May.6.00	45	8.1	29.0	-7	-34.1	-6.9	3720

BR 112	Ganga	Manihari	Aug.6.01	38			-9	-62	-9	
BR 318	Ganga	Rajmahal	May.8.00	28	8.1	30.9		-41.8	-6	3150
BGP 65	Ganga	Rajshahi	Mar.2.93	20	8.5*	23.6	-7.7		-8.2*	4321
BGP 4	Ganga	Rajshahi	Aug.1.92	20	7.6*	30.7	-8.7	-62.6	-10.1*	1711
BR 410	Ganga	Harding Bridge	Jul.31.04	17			-6.8	-42.1	-7.3	1500
BR 213	Ganga	Harding Bridge	Jul.7.02	17			-10	-69.7	-9.2	
BR 521	Ganga	Harding Bridge	Jul. 23.05	17					-9.8	1870
Water from ponds										
Bug-1	Rice field	Kathmandu	Jul.20.02	1441		30	-6.8		na	
MKR-1a	Small pond	Kathmandu	Feb.5.01	1230	6.9	8	3.4		na	
Btw-3	Small pond	Bastadi	Jan.10.01	855	7.6	12	-5.1		na	
RangsingKR	Ditch	Ransin	Feb.19.01	325		22	-1.9		na	
MaghaK	Small pond	Kairmara	Dec.13.01	190			-3.8		na	
BakaiKR-1	Small pond	Khoria	Feb.16.01	190	7.2	22	-4.9		na	
BR 370	Rapti pond	Unwal	May.14.00	81			5.6	14.1	-4.2	5110
BR 341	Gandak pond	Barauli	May.10.00	67			2.4	-2.5	-3.6	4760

* Data from Galy and France-Lanord, (1999), 99kg22 corresponds to data Garzione et al., (2000b); 17^J corresponds to data Jenkins et al., (1987) and 17^R corresponds to data Ramesh and Sarin, (1992).

Table 3					
Sample #	River /Location	Elevation (m)	Shell $\delta^{13}C$	Shell $\delta^{18}0$	Genus/ Species
North Himalav	a		(1 / (0 / / 00	(100)/00	
Jomg 3	Kali G./ Jomsom	2750	-1.2	-14 5	Lvmnaea sp
Jomg 4	Kali G./ Jomsom	2750	-2.9	-11.9	Lymnaea sp.
Jomg 7	Kali G./ Jomsom	2731	-7.1	-10.8	Lymnaeinae sp.
Jomg 5	Kali G./ Jomsom	2730	-8.3	-94	Lymnaeinae sp.
Jomg 6	Kali G./ Jomsom	2560	-6.9	-7.3	<i>Lymnaea</i> sp
Phewa Lake	D 11	700	11.0		
Phewa-1	Pokhara	798	-11.2	-9.1	Melanoides cf. tuberculata
Phewa-2	Pokhara	798	-10.9	-9.8	Bellamya bengalensis
Phewa-3	Pokhara	798	-6.5	-8.3	Lamellidens sp.
Phila	Pokhara	798	-6.8	-7.3	Bellamya bengalensis
Phllb	Pokhara	798	-6.5	-9.1	Indoplanorbis sp.
Apg 1a	Pokhara	798	-5.7	-7.9	Bellamya bengalensis
Apg 1b	Pokhara	798	-6.6	-8.4	Melanoides cf. tuberculata
	Average		-7.7	-8.6	
	Standard deviation		2.3	0.8	
Foothill rivers					
Btw-2	Tinau/ Charchare	559	-9.6	0 0	Rithynia sp
Btw-2 Melano	Tinau/ Charchare	559	-11.4	-8.8	Melanoides cf tuberculata
Btw-2 cor	Tinau/ Charchare	559	-11.2	-9.7	Corbicula sp
0027 a	Babai/ Tulsipur	555	-7.3	-8.7	Bellamva hengalensis
0027 u 0027 b	Babai/ Tulsipur	555	-7.4	-7.4	Corbicula sp
0027 c	Babai/ Tulsipur	555	-8.7	-7.1	Indonlanorbis sp
0027 d	Babai/ Tulsipur	555	-8.7	-6.2	<i>Gyraulus</i> sp
0027 e	Babai/ Tulsipur	555	-7.7	-7.6	Melanoides cf. tuberculata
BakaiKR-2	Simat/ Chatiwan	270	-11.2	-77	Melanoides cf. tuberculata
BakaiKR-3	Bakiya/ Chatiwan	265	-13.2	_5.9	Lymea acumita
Ga 126	Divalobanglo Khola/	165	-13.4	0.9	Melanoides cf. tuberculata
-	Diyalobanglo			-6.5	
Chit-1	Rapti/ Meghauli	145	-8.2	-7.3	Brotia sp.
Chit-3	Rapti/ Meghauli	145	-8.7	-8.9	Indoplanorbis sp.
	Average		-9.7	-7.6	
	Standard deviation		2.1	1.1	
Main H	imalavan rivers				
Ga 1i	Naravani/ Naravangad	178	-8.2	-62	Brotia sp.
Ga 1	Naravani/ Naravangad	178	-6 9	-0.2	Brotia sp.
Gag	Naravani/ Naravangad	140	-9.5	-6.6	Gastonoda sp
Koshi-1	Kosi Dam/ Nenal	84	-4.7	-6.8	Indoplanorbis exustus
Koshi-2	Kosi Dam/ Nenal	84	-9.1	-11 5	Melanoides cf. tuberculata
Koshi-3	Kosi Dam/ Nepal	84	-10.9	-11.5	Bellamva bengalensis
BR 373a	Ghaghara/ Dohrighat	74	-7.3	-4 3	Bellamva bengalensis
BR 373b	Ghaghara/Dohrighat	74	-7.4	-11 4	Bellamya bengalensis
BR 373-0	Ghaghara/ Dohrighat	74	-4.4	_7 9	Digoniostoma textum
BR 373-0'	Ghaghara/ Dohrighat	74	-6.1	-9 7	Digoniostoma textum
BR 373-1	Ghaghara/ Dohrighat	74	-5.4	-6.6	Digoniostoma textum

BR 373-2	Ghaghara/ Dohrighat	74	-8.6	-11.4	Digoniostoma textum
BR 373-3	Ghaghara/ Dohrighat	74	-7.2	-9.2	Digoniostoma textum
BR 373-4	Ghaghara/ Dohrighat	74	-6.2	-11.4	Digoniostoma textum
BR 373-5	Ghaghara/ Dohrighat	74	-7.4	-10.7	Digoniostoma textum
BR 373-6	Ghaghara/ Dohrighat	74	-5.2	-8.9	Indoplanorbis sp.
BR 373-7	Ghaghara/ Dohrighat	74	-7.0	-11.0	Indoplanorbis sp.
BR 373-8	Ghaghara/ Dohrighat	74	-5.0	-9.6	Indoplanorbis sp.
BR 373-9	Ghaghara/ Dohrighat	74	-5.9	-10.6	Indoplanorbis sp.
BR 373-10	Ghaghara/ Dohrighat	74	-5.5	-7.5	Indoplanorbis sp.
BR 337a	Gandak/Barauli	67	-73	-4.2	Bellamva bengalensis
BR 337a apex	Gandak/Barauli	67	-9.7	-4.8	Bellamva bengalensis
BR 337b	Gandak/Barauli	67	-77	-4.8	Bellamva hengalensis
BR 337c	Gandak/Barauli	67	-73	-10.0	Ballamya bangalansis
BR 333a	Kosi/Dumarighat	35	-8.4	-9.9	Bellamya sp
DR 555a	Kosi/ Dumanghat	55	-0.4	-9.1	Dettamya sp.
	Average		-7.1	-8.8	
	Standard deviation		1.7	2.3	
	Siandara deviation		107		
Plain river					
BR 367a	Rapti/ Gorakpur	81	-7.2	-6.8	Bellamva sp.
BR 134b	Gomti	74	-7.8	-8.0	<i>Corbicula</i> sp.
BR 134c	Gomti	74	-5.4	-5.0	Bellamva sp.
BR 134d	Gomti	74	-6.3	-5.1	Corbicula sp
BR 134e	Gomti	74	-7.6	-8.0	Bellamva hengalensis
BR 134f	Gomti	74	-4 1	-7.1	Melanoides cf tuberculata
BR 1349	Gomti	74	-7.1	-0.1	Rellamya sp
BR 376a	Gomti	68	-7.1	-7.1	Bellamya sp. Bellamya sp
DIC 5700	Gointí	00	1.2	-7.0	Denamya sp.
	Average		-6.6	-7	
,	Average Standard deviation		-6.6 1.3	-7 1.0	
,	Average Standard deviation		-6.6 1.3	-7 1.0	
Main Ganga Ri	Average Standard deviation		-6.6 1.3	-7 1.0	
Main Ganga Ri BR 385a	Average Standard deviation iver Ganga/ Varanasi	75	-6.0	-7 1.0 -5.9	Bellamya bengalensis.
Main Ganga Ri BR 385a BR 143g	Average Standard deviation iver Ganga/ Varanasi Ganga/ Varanasi	75 75	-6.0 -6.8	-7 1.0 -5.9 -5.1	Bellamya bengalensis. Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b	Average Standard deviation iver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi	75 75 75	-6.0 -6.8 -5.1	-7 1.0 -5.9 -5.1 -5.6	Bellamya bengalensis. Bellamya bengalensis Corbicula sp.
Main Ganga Ri BR 385a BR 143g BR 143b BR 143c	Average Standard deviation iver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi	75 75 75 75	-6.0 -6.8 -5.1 -5.3	-7 1.0 -5.9 -5.1 -5.6 -5.0	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143c BR 143d	Average Standard deviation iver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi	75 75 75 75 75 75	-6.0 -6.8 -5.1 -5.3 -6.4	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp.
Main Ganga Ri BR 385a BR 143g BR 143b BR 143b BR 143c BR 143d BR 305a	Average Standard deviation iver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna	75 75 75 75 75 75 45	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp.
Main Ganga Ri BR 385a BR 143g BR 143b BR 143c BR 143c BR 143d BR 305a BR 316a	Average Standard deviation iver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni	75 75 75 75 75 45 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143b BR 143c BR 143d BR 305a BR 316a BR 316a	Average Standard deviation iver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Barauni	75 75 75 75 75 45 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143c BR 143d BR 305a BR 316a BR 316b BR 316-1	Average Standard deviation Sver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni	75 75 75 75 75 45 38 38 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6 -7.9	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1 -7.2	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143c BR 143d BR 305a BR 316a BR 316b BR 316-1 BR 316-2	Average Standard deviation iver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni	75 75 75 75 75 45 38 38 38 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6 -7.9 -7.3	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1 -7.2 -7.2	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143c BR 143c BR 143d BR 305a BR 316a BR 316b BR 316-1 BR 316-2 BR 316-3	Average Standard deviation Sver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni	75 75 75 75 75 45 38 38 38 38 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6 -7.9 -7.3 -6.9	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1 -7.2 -7.2 -6.0	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143b BR 143c BR 143d BR 305a BR 316a BR 316a BR 316-1 BR 316-2 BR 316-3 BR 316-4	Average Standard deviation Ster Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni	75 75 75 75 45 38 38 38 38 38 38 38 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6 -7.9 -7.3 -6.9 -7.2	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1 -7.2 -7.2 -6.0 -7.0	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143b BR 143c BR 143d BR 305a BR 316a BR 316a BR 316b BR 316-1 BR 316-2 BR 316-3 BR 316-4 BR 316-5	Average Standard deviation Ster Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni	75 75 75 75 45 38 38 38 38 38 38 38 38 38 38 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6 -7.9 -7.3 -6.9 -7.2 -7.3	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1 -7.2 -7.2 -6.0 -7.0 -7.1	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143b BR 143c BR 143d BR 305a BR 316a BR 316b BR 316-1 BR 316-2 BR 316-3 BR 316-4 BR 316-5 BR 316-6	Average Standard deviation Sver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni Ganga/ Barauni	75 75 75 75 45 38 38 38 38 38 38 38 38 38 38 38 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6 -7.9 -7.3 -6.9 -7.2 -7.3 -7.0	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1 -7.2 -7.2 -6.0 -7.0 -7.1 -6.1	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143g BR 143b BR 143c BR 143c BR 143d BR 305a BR 316a BR 316b BR 316-1 BR 316-2 BR 316-3 BR 316-4 BR 316-5 BR 316-6 BR 316-7	Average <u>Standard deviation</u> iver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Barauni	75 75 75 75 75 45 38 38 38 38 38 38 38 38 38 38 38 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6 -7.9 -7.3 -6.9 -7.2 -7.3 -7.0 -5.9	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1 -7.2 -7.2 -6.0 -7.0 -7.1 -6.1 -7.0	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143b BR 143c BR 143d BR 305a BR 316a BR 316a BR 316-1 BR 316-2 BR 316-3 BR 316-3 BR 316-5 BR 316-6 BR 316-7 BR 316-8	Average Standard deviation Ver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Barauni	75 75 75 75 75 45 38 38 38 38 38 38 38 38 38 38 38 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6 -7.9 -7.3 -6.9 -7.2 -7.3 -6.9 -7.2 -7.3 -7.0 -5.9 -5.9	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1 -7.2 -6.0 -7.1 -6.1 -7.0 -7.1	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143b BR 143c BR 143d BR 305a BR 316a BR 316a BR 316-1 BR 316-2 BR 316-3 BR 316-3 BR 316-5 BR 316-6 BR 316-7 BR 316-8 BR 316-9	Average Standard deviation Ster Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Barauni	75 75 75 75 45 38 38 38 38 38 38 38 38 38 38 38 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6 -7.9 -7.3 -6.9 -7.2 -7.3 -6.9 -7.2 -7.3 -7.0 -5.9 -5.9 -5.9 -7.2	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1 -7.2 -7.2 -6.0 -7.0 -7.1 -6.1 -7.0 -7.1 -6.4	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143b BR 143c BR 143d BR 305a BR 316a BR 316a BR 316b BR 316-1 BR 316-2 BR 316-3 BR 316-4 BR 316-5 BR 316-6 BR 316-7 BR 316-8 BR 316-9 BR 316-10	Average Standard deviation Sver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Barauni	75 75 75 75 45 38 38 38 38 38 38 38 38 38 38 38 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6 -7.9 -7.3 -6.9 -7.2 -7.3 -7.0 -5.9 -5.9 -7.2 -8.1	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1 -7.2 -7.2 -6.0 -7.0 -7.1 -6.1 -7.0 -7.1 -6.4 -7.8	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143b BR 143c BR 143d BR 305a BR 316a BR 316b BR 316-1 BR 316-2 BR 316-3 BR 316-4 BR 316-5 BR 316-6 BR 316-7 BR 316-8 BR 316-9 BR 316-10 BGP 4e Bro	Average Standard deviation Sver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Barauni	75 75 75 75 45 38 38 38 38 38 38 38 38 38 38 38 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6 -7.9 -7.3 -6.9 -7.2 -7.3 -7.0 -5.9 -5.9 -7.2 -8.1 -10.3	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1 -7.2 -7.2 -6.0 -7.0 -7.1 -6.1 -7.0 -7.1 -6.1 -7.0 -7.1 -6.4 -7.8 -5.2	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143c BR 143c BR 143d BR 305a BR 316a BR 316b BR 316-1 BR 316-2 BR 316-2 BR 316-3 BR 316-3 BR 316-5 BR 316-6 BR 316-7 BR 316-6 BR 316-7 BR 316-7 BR 316-8 BR 316-9 BR 316-10 BGP 4e Bro BGP 4e	Average Standard deviation iver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Harding Ganga/ Harding.	75 75 75 75 75 45 38 38 38 38 38 38 38 38 38 38 38 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6 -7.9 -7.3 -6.9 -7.2 -7.3 -7.0 -5.9 -5.9 -5.9 -5.9 -5.9 -7.2 -8.1 -10.3 -9.6	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1 -7.2 -7.2 -6.0 -7.1 -6.1 -7.0 -7.1 -6.4 -7.8 -5.2 -4.5	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis
Main Ganga Ri BR 385a BR 143g BR 143b BR 143b BR 143c BR 143d BR 305a BR 316a BR 316a BR 316-1 BR 316-2 BR 316-3 BR 316-3 BR 316-4 BR 316-5 BR 316-6 BR 316-7 BR 316-7 BR 316-8 BR 316-9 BR 316-10 BGP 4e Bro BGP 4e	Average Standard deviation Sver Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Varanasi Ganga/ Patna Ganga/ Barauni Ganga/ Harding	75 75 75 75 45 38 38 38 38 38 38 38 38 38 38 38 38 38	-6.6 1.3 -6.0 -6.8 -5.1 -5.3 -6.4 -10.1 -5.5 -6.6 -7.9 -7.3 -6.9 -7.2 -7.3 -7.0 -5.9 -5.9 -5.9 -5.9 -7.2 -8.1 -10.3 -9.6	-7 1.0 -5.9 -5.1 -5.6 -5.0 -5.3 -8.6 -7.0 -7.1 -7.2 -7.2 -6.0 -7.0 -7.1 -6.1 -7.0 -7.1 -6.1 -7.0 -7.1 -6.4 -7.8 -5.2 -4.5	Bellamya bengalensis. Bellamya bengalensis Corbicula sp. Bellamya bengalensis Corbicula sp. Brotia sp. Bellamya bengalensis Bellamya bengalensis

	Standard deviation		1.5	1.0	
Himalayan por	nds				
Bug-1	Kathmandu Valley	1441	-11.6	-6.7	<i>Lymnaea</i> sp.
Bug-2	Kathmandu Valley	1441	-12.5	-7.4	Bithynia sp.
Bug 2op	Kathmandu Valley	1441	-11.5	-6.8	Opercula of Bithynia sp.
MKR-1a	Kathmandu Valley	1230	-0.8	2.4	<i>Lymnaea</i> sp.
MKR-1b	Kathmandu Valley	1230	2.5	-6.8	Indoplanorbis sp.
MKR-1c	Kathmandu Valley	1230	0.6	-3.4	<i>Physa</i> sp.
Tau-1	Kathmandu Valley	1290	-8.0	-7.6	<i>Lymnaea</i> sp.
0027 f	Dun Valley/ Nepal	555	-8.3	-3.6	Gastopoda sp.
0027 g	Dun Valley/ Nepal	555	-7.1	3.6	Bithynia sp.
0027 h	Dun Valley/ Nepal	555	-9.3	2.8	<i>Lymnaea</i> sp.
Chit-2	Dun Valley/ Nepal	145	-7.6	-3.8	Bellamya bengalensis
Ganga plain po	onds				
BakaiKR-1	Terai/ Nepal	190	-5.8	-2.3	Bellamya bengalensis
MaghaK	Terai/ Nepal	190	-12.6	-7.3	Bellamya bengalensis
BR 369a	Rapti/ Unwal	81	-4.7	-7.7	<i>Bellamya</i> sp.
BR 369b	Rapti/ Unwal	81	-4.4	-2.2	<i>Bellamya</i> sp.
BR 339a	Gandak/ Barauli	67	-7.3	-6.3	Bellamya bengalensis
BR 339b	Gandak/ Barauli	67	-5.6	-2.5	Brotia sp.
BR 339c	Gandak/ Barauli	67	-6.7	-2.3	Bellamya bengalensis

Shell sample # Intra-shell sample #. Distance from apex(mm) 8 ^b C (PDB) %o 8 ^b C (PDB) %o strie-1 141 -7.8 -7.5 strie-2 129 -8.2 -8.0 strie-3 118 -8.3 -7.8 strie-4 106 -8.1 -7.6 strie-5 95 -8.2 -6.9 strie-7 73 -8.2 -7.0 strie-8 61 -8.2 -7.0 strie-9 51 -8.3 -7.1 strie-10 38 -8.2 -7.0 strie-10 38 -8.2 -7.1 strie-10 38 -8.5 -11.0 -7.0 b 8.5 -11.0 -7.0 -7.8 -6.5 Btw-2 cor c 7.5 -11.4 -9.3 -9.3 f 4 -10.9 -9.0 -7.7 -6.6 BR 316a 157 -7.7 -6.6 -6.5 BR 316b 152	Table 4				
stric-1 141 -7.8 -7.5 stric-2 129 -8.2 -8.0 stric-3 118 -8.3 -7.8 stric-4 106 -8.1 -7.6 Chit-1 stric-5 95 -8.2 -6.9 stric-6 84 -8.2 -7.0 stric-7 73 -8.2 -7.0 stric-8 61 -8.2 -6.9 stric-9 51 -8.3 -7.1 stric-10 38 -8.2 -7.0 stric-11 28 -8.1 -7.2 a 9.5 -11.0 -7.0 b 8.5 -11.4 -9.8 g f 4 -10.9 -9.0 c 2 -10.8 -9.3 g f 4 -10.9 -9.0 c 2 -10.8 -9.3 g f 4 -10.9 -9.0 c 2	Shell sample #	Intra-shell sample #.	Distance from apex(mm)	δ ^{l3} C (PDB)	δ^{18} O (PDB)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				‰	‰
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		strie-1	141	-7.8	-7.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		strie-2	129	-8.2	-8.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		strie-3	118	-8.3	-7.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		strie-4	106	-8.1	-7.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chit-1	strie-5	95	-8.2	-6.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		strie-6	84	-8.2	-7.0
stric-8 61 -8.2 -6.9 stric-9 51 -8.3 -7.1 stric-10 38 -8.2 -7.1 stric-11 28 -8.1 -7.2 a 9.5 -11.0 -7.0 b 8.5 -11.2 -7.8 Btw-2 cor c 7.5 -11.8 -9.3 d 5.5 -11.4 -9.8 -9.3 f 4 -10.9 -9.0 - e 2 -10.8 -9.3 BR 316a 157 -7.7 -6.6 BR 3160 141 -8.1 -6.5 BR 31610d 138 -8.5 -6.5 BR 31610d 130 -8.0 -6.6 BR 31610g 127 -8.2 -6.5 BR 31610g 120 -8.1 -6.6 BR 31610h 120 -8.1 -6.6 BR 31610h 112 -8.1 -7.6 BR 31610h		strie-7	73	-8.2	-7.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		strie-8	61	-8.2	-6.9
strie-10 38 -8.2 -7.1 strie-11 28 -8.1 -7.2 a 9.5 -11.0 -7.0 b 8.5 -11.2 -7.8 Btw-2 cor c 7.5 -11.8 9.3 c 7.5 -11.4 -9.8 f 4 -10.9 -9.0 e 2 -10.8 -9.3 BR 316a 157 -7.7 -6.6 BR 316b 152 -7.8 -6.5 BR 316 10d 141 -8.1 -6.3 BR 316 10d 138 -8.5 -6.5 BR 316 10d 130 -8.0 -6.6 BR 316 10g 120 -8.1 -6.5 BR 316 10g 123 -8.1 -6.6 BR 316 10h 120 -8.1 -6.6 BR 316 10h 120 -8.1 -7.6 BR 316 10h 112 -8.1 -7.6 BR 316 10h 102		strie-9	51	-8.3	-7.1
strie-11 28 -8.1 -7.2 a 9.5 -11.0 -7.0 b 8.5 -11.2 -7.7 b 8.5 -11.4 -9.3 d 5.5 -11.4 -9.3 d 5.5 -11.4 -9.3 e 2 -10.8 -9.3 BR 316a 157 -7.7 -6.6 BR 316b 152 -7.8 -6.5 BR 316 10d 141 -8.1 -6.5 BR 316 10d 138 -8.5 -6.5 BR 316 10d 130 -8.0 -6.7 BR 316 10g 127 -8.2 -6.5 BR 316 10g 127 -8.2 -6.5 BR 316 10g 112 -8.1 -7.6 BR 316 10g 112 -8.1 -7.6 BR 316 10h 102 -8.3 -6.9 BR 316 10h 102 -8.3 -8.1 BR 316 10h 102 -8.3		strie-10	38	-8.2	-7.1
a 9.5 -11.0 -7.0 b 8.5 -11.2 -7.8 b 8.5 -11.4 -9.8 f 4 -10.9 -9.0 c 2 -10.8 -9.3 BR 316a 157 -7.7 -6.6 BR 316b 152 -7.8 -6.5 BR 316b 152 -7.8 -6.5 BR 316 10d 141 -8.1 -6.5 BR 316 10d 138 -8.5 -6.6 BR 316 10d 130 -8.0 -6.7 BR 316 10d 123 -8.1 -6.6 BR 316 10b 123 -8.1 -6.6 BR 316 10b 123 -8.1 -7.4 BR 316 10b 112 -8.1 -7.4 BR 316 10b 112 -8.1 -7.6 BR 316 10b 112 -8.1 -7.6 BR 316 10b 112 -8.4 -7.8 BR 316 10b 112 -8.4		strie-11	28	-8.1	-7.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3	9.5	-11.0	-7.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		h	8.5	-11.0	-7.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Btw-2 cor	C	7 5	_11.2	-93
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dtw-2 coi	d	5.5	-11.0	-9.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		u f	3.5 A	-10.9	-9.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		-10.9	0.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		DD 2160	157	-10.8	-9.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		DK 310a DD 316b	157	-/./	-0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		DR 3100	132	-/.8	-0.5
BR 316 10d 141 -8.1 -0.3 BR 316 10d' 138 -8.5 -6.5 BR 316 10e 135 -8.0 -6.6 BR 316 10g 127 -8.2 -6.5 BR 316 10g 127 -8.2 -6.5 BR 316 10h 123 -8.1 -6.6 BR 316 10h 120 -8.1 -6.5 BR 316 10h 120 -8.1 -7.4 BR 316 10h 112 -8.1 -7.6 BR 316 10h 107 -8.2 -7.6 BR 316 10h 102 -8.3 -8.1 BR 316 10h 102 -8.3 -8.1 BR 316 10h 97 -8.4 -7.8 BR 316 10p 94 -8.5 -8.0 BR 316 10g 76 -8.7 -8.1 BR 316 10h 70 -8.4 -8.2 BR 316 10h 50 -7.7 -9.6 BR 316 10h 50 -7.7 -9.4 BR 316 10a </td <td></td> <td>DR 3100</td> <td>147</td> <td>-8.1</td> <td>-0.5</td>		DR 3100	147	-8.1	-0.5
BR 316 10d 138 -8.3 -6.5 BR 316 10f 130 -8.0 -6.7 BR 316 10g 127 -8.2 -6.5 BR 316 10g 123 -8.1 -6.6 BR 316 10j 118 -8.3 -6.9 BR 316 10j 118 -8.3 -6.9 BR 316 10h 112 -8.1 -7.4 BR 316 10h 112 -8.1 -7.6 BR 316 10h 107 -8.2 -7.6 BR 316 10h 102 -8.3 -8.1 BR 316 10h 87 -8.4 -7.8 BR 316 10h 81 -8.6 -7.7 BR 316 10h 66 -8.1 -8.1 BR 316 10h 61 -7.3 -9.2 BR 316 10h 61 -7.7 -8.4 BR 316 10h </td <td></td> <td>BK 316 100</td> <td>141</td> <td>-8.1</td> <td>-6.3</td>		BK 316 100	141	-8.1	-6.3
BR 316 106 130 -8.0 -6.7 BR 316 10f 130 -8.0 -6.6 BR 316 10g 127 -8.2 -6.5 BR 316 10h 123 -8.1 -6.6 BR 316 10i 120 -8.1 -6.5 BR 316 10i 118 -8.3 -6.9 BR 316 10h 112 -8.1 -7.6 BR 316 10h 102 -8.3 -8.1 BR 316 10h 102 -8.3 -8.1 BR 316 10h 102 -8.3 -7.7 BR 316 10h 102 -8.3 -7.7 BR 316 10h 97 -8.4 -7.8 BR 316 10h 97 -8.4 -7.8 BR 316 10h 81 -8.6 -7.7 BR 316 10h 70 -8.4 -8.2 BR 316 10h 66 -8.1 -8.1 BR 316 10h 61 -7.7 -9.2 BR 316 10h 50 -7.0 -9.6 BR 316 10h <td></td> <td>BR 316 100</td> <td>138</td> <td>-8.5</td> <td>-6.5</td>		BR 316 100	138	-8.5	-6.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10e	135	-8.0	-6./
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10f	130	-8.0	-6.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10g	127	-8.2	-6.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10h	123	-8.1	-6.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 101	120	-8.1	-6.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10j	118	-8.3	-6.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10k	116	-8.1	-7.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 101	112	-8.1	-7.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10m	107	-8.2	-7.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10n	102	-8.3	-8.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10o	97	-8.4	-7.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BR 316-10	BR 316 10p	94	-8.5	-8.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10q	87	-8.4	-8.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10r	81	-8.6	-7.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10s	76	-8.7	-8.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10t	70	-8.4	-8.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10u	66	-8.1	-8.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10v	61	-7.3	-9.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		BR 316 10w	50	-7.0	-9.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BR 316 10x	46	-7.7	-8.4
BR 316 10z 38 -7.9 -9.2 BR 316 10aa 31 -8.0 -9.3 BR 316 10ab 25 -8.2 -9.3 BR 316 10ac 15 -7.9 -9.4 BR 316 10ad 8 -8.0 -9.5 BR 316 10ad 8 -8.0 -9.5 BR 316 10ad 8 -8.0 -9.5 BR 337 3c 154 -12.3 -9.3 BR 337 3d 152 -12.3 -8.5 BR 337 3c 148 -12.5 -9.3 BR 337 3f 144 -12.4 -9.1 BR 337 3g 140 -12.5 -8.4 BR 337 3h 136 -12.4 -8.2 BR 337 3i 132 -12.4 -9.2 BR 337 3k 128 -12.3 -9.5 BR 337 3l 124 -12.9 -10.3		BR 316 10y	41	-8.1	-8.5
BR 316 10aa 31 -8.0 -9.3 BR 316 10ab 25 -8.2 -9.3 BR 316 10ac 15 -7.9 -9.4 BR 316 10ad 8 -8.0 -9.5 BR 316 10ad 8 -8.0 -9.5 BR 316 10ad 8 -8.0 -9.5 BR 316 10ad 8 -12.3 -9.3 BR 337 3c 154 -12.3 -9.3 BR 337 3d 152 -12.3 -8.5 BR 337 3e 148 -12.5 -9.3 BR 337 3f 144 -12.4 -9.1 BR 337 3g 140 -12.5 -8.4 BR 337 3h 136 -12.4 -8.2 BR 337 3i 132 -12.4 -9.2 BR 337 3k 128 -12.3 -9.5 BR 337 3l 124 -12.9 -10.3		BR 316 10z	38	-7.9	-9.2
BR 316 10ab 25 -8.2 -9.3 BR 316 10ac 15 -7.9 -9.4 BR 316 10ad 8 -8.0 -9.5 BR 337 3c 154 -12.3 -9.3 BR 337 3d 152 -12.3 -8.5 BR 337 3e 148 -12.5 -9.3 BR 337 3g 144 -12.4 -9.1 BR 337 3g 140 -12.5 -8.4 BR 337 3h 136 -12.4 -8.2 BR 337 3i 132 -12.4 -9.2 BR 337 3k 128 -12.3 -9.5 BR 337 3l 124 -12.9 -10.3		BR 316 10aa	31	-8.0	-9.3
BR 316 10ac 15 -7.9 -9.4 BR 316 10ad 8 -8.0 -9.5 BR 337 3c 154 -12.3 -9.3 BR 337 3d 152 -12.3 -8.5 BR 337 3e 148 -12.5 -9.3 BR 337 3f 144 -12.4 -9.1 BR 337 3g 140 -12.5 -8.4 BR 337 3h 136 -12.4 -8.2 BR 337 3i 132 -12.4 -9.2 BR 337 3k 128 -12.3 -9.5 BR 337 3l 124 -12.9 -10.3		BR 316 10ab	25	-8.2	-9.3
BR 316 10ad 8 -8.0 -9.5 BR 337 3c 154 -12.3 -9.3 BR 337 3d 152 -12.3 -8.5 BR 337 3e 148 -12.5 -9.3 BR 337 3f 144 -12.4 -9.1 BR 337 3g 140 -12.5 -8.4 BR 337 3h 136 -12.4 -8.2 BR 337 3i 132 -12.4 -9.2 BR 337 3k 128 -12.3 -9.5 BR 337 3l 124 -12.9 -10.3		BR 316 10ac	15	-7.9	-9.4
BR 337 3c 154 -12.3 -9.3 BR 337 3d 152 -12.3 -8.5 BR 337 3e 148 -12.5 -9.3 BR 337 3f 144 -12.4 -9.1 BR 337 3g 140 -12.5 -8.4 BR 337 3h 136 -12.4 -8.2 BR 337 3i 132 -12.4 -9.2 BR 337 3k 128 -12.3 -9.5 BR 337 3l 124 -12.9 -10.3		BR 316 10ad	8	-8.0	-9.5
BR 337 3d 152 -12.3 -8.5 BR 337 3e 148 -12.5 -9.3 BR 337 3f 144 -12.4 -9.1 BR 337 3g 140 -12.5 -8.4 BR 337 3h 136 -12.4 -8.2 BR 337 3i 132 -12.4 -9.2 BR 337 3k 128 -12.3 -9.5 BR 337 3l 124 -12.9 -10.3		BR 337 3c	154	-12.3	-9.3
BR 337 3e 148 -12.5 -9.3 BR 337 3f 144 -12.4 -9.1 BR 337 3g 140 -12.5 -8.4 BR 337 3h 136 -12.4 -8.2 BR 337 3i 132 -12.4 -9.2 BR 337 3k 128 -12.3 -9.5 BR 337 3l 124 -12.9 -10.3		BR 337 3d	152	-12.3	-8.5
BR 337 3f 144 -12.4 -9.1 BR 337 3g 140 -12.5 -8.4 BR 337 3h 136 -12.4 -8.2 BR 337 3i 132 -12.4 -9.2 BR 337 3k 128 -12.3 -9.5 BR 337 3l 124 -12.9 -10.3		BR 337 3e	148	-12.5	-9.3
BR 337 3g 140 -12.5 -8.4 BR 337 3h 136 -12.4 -8.2 BR 337 3i 132 -12.4 -9.2 BR 337 3k 128 -12.3 -9.5 BR 337 3l 124 -12.9 -10.3		BR 337 3f	144	-12.4	-9 1
BR 337 3h 136 -12.4 -8.2 BR 337 3i 132 -12.4 -9.2 BR 337 3k 128 -12.3 -9.5 BR 337 3l 124 -12.9 -10.3		BR 337 39	140	-12.5	-8.4
BR 337 3i 132 -12.4 -9.2 BR 337 3k 128 -12.3 -9.5 BR 337 3l 124 -12.9 -10.3		BR 337 3h	136	-12.4	-8.2
BR 337 3k 128 -12.3 -9.5 BR 337 3l 124 -12.9 -10.3		BR 337 3i	132	-12.1	-9.2
BR 337 31 124 -12.9 -10.3		BR 337 3k	128	-12.3	-9.5
		BR 337 31	124	-12.9	-10.3

	BR 337 3m	120	-12.6	-9.7
BR 337-3	BR 337 3n	116	-12.1	-8.6
	BR 337 30	112	-12.4	-9.4
	BR 337 3p	108	-12.6	-9.5
	BR 337 3q	104	-12.6	-9.6
	BR 337 3r	100	-12.6	-9.2
	BR 337 3s	96	-12.2	-10.7
	BR 337 3t	92	-12.7	-10.1
	BR 337 3v	84	-11.3	-10.6
	BR 337 3w	80	-12.0	-9.9
	BR 337 3x	76	-12.0	-9.8
	BR 337 3y	72	-12.1	-10.5
	BR 337 3A	65	-11.7	-11.1
	BR 337 3B	62	-11.0	-10.7
	BR 337 3C	58	-11.0	-9.4
	BR 337 3D	54	-11.0	-9.0
	BR 337 3F	33	-11.2	-10.1
	BR 337 3ag	26	-10.2	-10.2
	BR 337 3ah	14	-10.6	-8.8