187 research outputs found

    Quanta: The Originality of Einstein's Approach to Relativity?

    Full text link
    We suggest that not only quanta may have played a role in Einstein's ideas on relativity, but that they themselves may be related to the dynamical and relativistic behaviour of the electromagnetic field exhibited in a Poincar\'e's 1900 paper, in particular to the identical transformation law of energy and frequency for bounded plane waves

    Einstein et Besso : de ZĂŒrich Ă  Milan

    No full text
    International audienceThe 1896-1901 Milanese period is a key one to understand Einstein’s training background. When he was a student at the ETH in ZĂŒrich (the Swiss Federal Polytechnic in ZĂŒrich) from 1896 to 1900, he would make regular trips back to Milan to stay with his family who was involved in the development of the electricity industry in northern Italy. Between 1899 and 1901, he would meet his faithful friend and collaborator, Michele Besso in Milan on a regular basis. Given their relationship, the 1899-1901 Milanese period therefore foreshadowed the Bern period. In order to specify the circumstances under which Einstein and Besso got the chance to meet, we will show that their respective families did have interconnected social networks, especially through the electricity sector and the polytechnic engineering Universities of ZĂŒrich and Milan. The branch of the Cantoni family, on Michele’s mother’s side, rather ignored by now, played a crucial role: with Vittorio Cantoni, a renowned electrical engineer who had not been previously identified as being Michele’s uncle, and Giuseppe Jung, professor at the Milan Politecnico. We will also show that when staying in Milan, Einstein, who lived in a well-known Milanese palace in the heart of the city, worked in the nearby rich library of the Istituto Lombardo, Accademia di Scienze e Lettere in Brera. The linkage between the scientific observations which can be found in Einstein’s correspondence and this library collection sheds new light on his scientific work, in particular on his original thesis.La pĂ©riode milanaise 1896-1901 est une pĂ©riode clĂ© pour comprendre les annĂ©es de formation d'Albert Einstein. Alors Ă©tudiant Ă  l'ETH de Zurich entre 1896 et 1900, il rejoint rĂ©guliĂšrement sa famille, installĂ©e Ă  Milan, et impliquĂ©e de longue date dans le dĂ©veloppement de l'Ă©lectricitĂ© en l'Italie du nord. Entre 1899 et 1901, il y retrouve son ami et collaborateur, Michele Besso, qu'il avait connu Ă  Zurich. Du point de vue de la relation Einstein-Besso, la pĂ©riode milanaise 1899-1901 prĂ©figure celle de Berne Ă  partir de 1904, oĂč les deux amis se retrouvent au Bureau des Brevets. Afin de prĂ©ciser le cadre de leur rencontre, nous mettrons en Ă©vidence les liens de leurs familles respectives avec le milieu de l'Ă©lectricitĂ© et des Ă©coles polytechniques de Zurich, Milan. La branche maternelle de la famille de Michele, relativement ignorĂ©e jusqu'Ă  prĂ©sent, tient un rĂŽle important, avec Vittorio Cantoni, ingĂ©nieur en chef de la premiĂšre ligne de transport de courant alternatif en Italie entre Tivoli et Rome, qui n'avait pas Ă©tĂ© identifiĂ© auparavant comme Ă©tant un oncle de Michele, et Giuseppe Jung, professeur de mathĂ©matiques au Politecnico de Milan, avec lequel Einstein est restĂ© en contact plusieurs annĂ©es. Nous montrerons aussi qu'Einstein, qui habite un cĂ©lĂšbre palais milanais au coeur de la ville, travaille Ă  la riche bibliothĂšque scientifique de l'Istituto Lombardo, Accademia di Scienze e Lettere situĂ©e au palais Brera, Ă  500 mĂštres de son domicile. La mise en rapport des remarques scientifiques qui apparaissent dans la correspondance d'Albert Einstein avec le fonds de cette bibliothĂšque apporte un Ă©clairage nouveau sur son travail, en particulier sur sa thĂšse originale

    Development and assessment of tools for quantitative dynamic contrast enhanced MRI of bone metastases from breast and prostate cancer

    Get PDF
    The microenvironment of solid human tumors is characterized by heterogeneity in oxygenation and by proliferation of a network of blood vessels that provides oxygen and nutrients and removes waste products. The capability of a tumor to metastasize is linked to the well known hyper permeability of tumor vessels; in fact angiogenic primary tumors possess a large number of micro-vessels through which the metastasizing cells are shed into the blood stream. Pioneering studies performed by Folkman in 1971 proposed an insightful anticancer therapy by starvation of blood supply, Folkman's intuition that tumor growth and metastasis strictly depend on angiogenesis led to the idea that blocking tumor nourishment could be one of the ways to avoid its spread. Many imaging strategies have been used to determine angiogenesis in vivo, among them Dynamic Contrast Enhanced MRI (DCE-MRI) which provides a powerful tool for the rapid evaluation of the acute pharmacodynamic effect of the most recent agents in clinical trials, most notably in the case of mechanisms that affect tumor perfusion. One of the attractives of dynamic post contrast imaging is the insight it offers into the distribution kinetics of contrast agent in the tissue. These quantities are generally derived from simple models of the tissue as a compartmentalized system (usually a plasma-interstitial two-compartments model is used), using a kinetic analysis originally developed for use with nuclear medicine tracers. In this study a three parameters model has been used in order to describe the transport of tracer in the tissues. The first one takes into account the plasma volume in the voxel or in the region of interest being examined, the second is related to the amount of tracer that enters the EES and the last one determines the washout rate from EES back into the blood plasma. An artery input function (AIF), namely the concentration of contrast in the plasma, is provided as well. In order to obtain these parameters it is necessary to perform the fit of the chosen model on the concentration-curves vs time. It is possible to correlate the contrast agent concentration with the difference of relaxation rate (the inverse of longitudinal relaxation time); this way the concentration-curves can be achieved by means of T1-weighted images. In this work, an acquisition protocol has been optimized in order to provide the images from which extracting the data related to the tumor perfusion. Post processing tools, which carry out the fitting, the smoothing, and, the registration, have been developed and tested, as well. These tools can provide the oncologysts and radiologists a way to perform reproducible and quantitative estimation of the tumor perfusion in anti-angiogenic therapy

    Henri Poincaré : du « principe de mouvement relatif » au « principe de relativité » en passant par le « principe de réaction » et son rapport à la théorie de Lorentz

    Get PDF
    Le « principe de relativité » apparaĂźt dans sa forme moderne en 1905, dans les travaux de Henri PoincarĂ© « Sur la dynamique de l’électron ». Mais l’élĂ©vation du principe de relativitĂ© (galilĂ©en) de la mĂ©canique (newtonienne) au rang de principe gĂ©nĂ©ral gouvernant toute la physique a Ă©tĂ© l’objet d’une gestation complexe chez PoincarĂ©. Nous en retraçons les principales Ă©tapes en commençant par son cours de physique Ă  la Sorbonne en 1889, oĂč il gĂ©nĂ©ralise les conclusions de Fresnel de 1818 sur la rĂ©fraction dans l’expĂ©rience du prisme d’Arago (le « principe de mouvement relatif » Ă©tendu Ă  l’optique). Nous nous intĂ©ressons ensuite Ă  ses articles scientifiques dans la revue l’Éclairage Ă©lectrique en 1895, oĂč il confronte la thĂ©orie de Lorentz au principe de rĂ©action newtonien qui s’applique Ă  la matiĂšre seule (son « objection » Ă  la thĂ©orie). PoincarĂ© soulĂšve Ă  cette occasion la « connexion » de ce principe avec le « principe de mouvement relatif ». Pour mieux comprendre ces enjeux nouveaux, nous revenons en dĂ©tail sur l’article fondamental de PoincarĂ© « La thĂ©orie de Lorentz et le principe de rĂ©action », Ă  l’occasion du JubilĂ© pour Lorentz de dĂ©cembre 1900, oĂč PoincarĂ© prĂ©cise Ă  quelles conditions ces principes s’étendent Ă  l’électrodynamique. Pour conclure, nous verrons comment, en 1905, le « principe de mouvement relatif » devient « principe de relativité » en lien avec la « cohĂ©rence parfaite » de la thĂ©orie de Lorentz. Notre article est le premier, Ă  notre connaissance, Ă  donner une perspective d’ensemble aux travaux de PoincarĂ© de 1889 Ă  1900 mentionnĂ©s ci-dessus et Ă  la logique qui les relie.The principle of relativity first appeared in its modern form in 1905 in the works of Henri PoincarĂ© “On the dynamics of the electron”. However, establishing the (Galilean) principle of relativity of (Newtonian) mechanics as a general principle of physics had a complex gestation in Poincaré’s works. We discuss his physics course at the Sorbonne in 1889 in which he generalized Fresnel’s conclusions of 1818 on refraction in Arago’s prism experiment (the “principle of relative motion” extended to optics). Then we discuss his scientific articles in the journal Éclairage Ă©lectrique in 1895 in which he confronted Lorentz’s theory with the Newtonian principle of reaction that applies to matter alone (his “objection” to the theory). PoincarĂ© emphasizes herein the “connection” of this principle with the principle of relative motion. In order to better understand this issue, we return in detail to Poincaré’s fundamental article “The theory of Lorentz and the principle of reaction” on the occasion of the December 1900 Jubilee celebration of Lorentz’s defence of his doctoral thesis in which he specifies the conditions required to extend these principles to electrodynamics. In conclusion, we will see how in 1905, the principle of relative motion becomes the “postulate of relativity” in connection with the “perfect coherence” of Lorentz’s theory. To our knowledge our article is the first to give an overall perspective of the works of PoincarĂ© from 1889 to 1900 as mentioned above and to the logic that connects them
    • 

    corecore