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Introduction

Big Data initiatives are aimed at drawing inferences 

from large datasets that are not derived from carefully 

controlled information [1]. In medicine, the basic idea 

behind using big data is to learn new knowledge from 

every patient we have ever treated and apply this knowl-

edge to the next patient [2]. This concept will give future 

generations the opportunity to bring into existence a “fast 

learning health system” to the benefit of each individual 

patient. In the era of precision medicine, this evolution-

ary concept may lead to a comprehensive and individual 

approach to treatment [3]. In oncology, where information 

collected from the single patient is extremely variegated, 

big data analysis could allow definition of specific and 

efficient diagnostic and therapeutic pathways, improv-

ing patient workflow and quality of life. The aim of this 

review is to collect current evidence and to envisage how 

in the future big data may impact on the diagnostic path-

way of the oncologic patient.

Big data in oncologic imaging: the rationale

The following key concepts related to big data should be 

considered when approaching oncologic imaging issues:

1. Opposite to traditional hypothesis-driven cancer 

research [4], big data research may be launched regard-

less of whether important questions are identified.
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2. Big data in health consists in datasets that are too big, 

too inhomogeneous, and too complex for healthcare 

providers to process and interpret with existing tools 

[5].

3. Big data is not about implementing one piece of tech-

nology, it also includes data mining and machine learn-

ing and offers potential alternative approaches to lever-

aging large data resources [6, 7].

Cancer fits well into these concepts, as it is a complex 

disease that changes, evolves, and adapts to the surround-

ing environment. Its evolution could be better understood 

by collecting information from different sources—e.g., 

demographic, genetic, imaging, treatment, and outcomes—

that could then be processed as big data. In the last two 

decades, the development of efficient information technol-

ogy (IT) infrastructures has allowed digitalization and elec-

tronic integration of healthcare information [8]. In 2012, 

AT&T estimated that the storage requirements for medi-

cal archives were increasing by 20–40 % each year, with 

medical images constituting one-third of total global stor-

age demand [9, 10]. Today, an average size hospital man-

ages approximately 665 TB of patient data, corresponding 

to approximately 140.000 DVDs [11].

Big data has the potential to dramatically reshape can-

cer care landscape, improving quality and efficiency in 

every cancer setting [12] (Fig. 1). In the field of oncologic 

imaging, big data may allow the development of tools for 

baseline assessment and for quantification of anatomic and 

functional changes over time. Quantitative imaging bio-

markers will contribute to tailoring treatment to each indi-

vidual patient. Extraction of data from radiation and con-

trast agent dose registries will allow to explore dose effects 

on subjects with cumulative X-rays, computed tomogra-

phy (CT) scans, radiation therapy treatments, or nuclear 

medicine examinations and minimize contrast-induced 

nephrotoxicity by stratifying cancer patients into risk cat-

egories. Finally, processing of big data could support the 

development of optimized clinical workflows and in the 

end increase the management efficiency of comprehensive 

Fig. 1  Circle of medical knowledge in oncology. The individual patient is the source of information and the target of care delivery
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cancer centers and of tertiary health facilities in general 

[13].

Big data in oncologic imaging: current 

developments

Today, most of what we know about cancer comes from 

a tiny subset of patients, i.e., the 3 % who are enrolled in 

clinical trials; hence, those data are non-representative of 

the entire cancer population [14]. The remaining 97 % gen-

erate potentially useful information that is lost, due to the 

fact that data collection is mostly non-structured. In recent 

years, publicly accessible medical repositories are being 

implemented with the aim of collecting data from different 

imaging modalities. The cancer imaging archive (TCIA), 

for example, provides a public repository of cancer images 

and related clinical data [15]. The repository was created 

with the support of the National Cancer Institute with the 

aim of collecting, curating, and managing a rich collection 

of oncologic imaging data to enable open-science research. 

[16]. At present, more than 26 million radiologic images 

contributed by 28 institutions and several thousand pathol-

ogy images are stored in this repository that is constantly 

increasing in size and variety [15]. In this chapter, we will 

review how the analysis of all this information benefits 

each individual patient.

Extracting the “dark matter” from medical images

In medical images, data are usually provided as an orderly 

set of gray scale pixel values; however, in this form data 

are not synonymous of information or knowledge. Indeed, 

of the estimated 80 % of hospital data that are represented 

by unstructured imaging data [11], very little are currently 

being used for diagnosis. Eliot Siegel from the University 

of Maryland compared the data hidden in a clinical image, 

i.e., data that cannot be directly observed with current tech-

nology, as the “dark matter in space” [17]. The main chal-

lenge for future generations will be to extract important and 

meaningful information from this dark matter. Improve-

ments in image analysis will reasonably bridge the gap 

between the visual content and its numeric representation, 

which includes encoded color and texture properties of an 

image, the spatial layout of objects, and geometric shape 

characteristics of anatomical structures. More and more 

diagnostic techniques are providing multi-modality imag-

ing, with challenging big data management issues. A mag-

netic resonance (MR) examination, for example, includes 

high-resolution morphological images and information on 

tissue perfusion and diffusion capturing complex in vivo 

flow patterns; similarly, CT dual-energy acquisitions 

include information on material decomposition and spectral 

imaging [18]. Furthermore, combining different imaging 

modalities at the hardware level (MR/PET, PET/CT) will 

open up a range of new opportunities for image analysis 

[5].

Pattern recognition software and tools for high-through-

put extraction of quantitative features have been imple-

mented in parallel to the increase in dataset size and infor-

mation. Conversion of images into mineable data and 

subsequent analysis for clinical decision support has paved 

the way to radiomics [1]. Radiomic data typically con-

tain first-, second-, and higher-order statistics that can be 

combined with other patient data to develop models with 

improved diagnostic, prognostic, and predictive accuracy.

Diagnostic X-ray dose exposure

During the past 30 years, radiologic procedures involving 

ionizing radiation have been increasingly used in clinical 

routine leading to a dramatic increase in individual patient 

dose exposure. Today, medical radiation comprises almost 

50 % of per capita radiation dose, compared with 15 % in 

the early 1980s [19]. Individual risk of developing radia-

tion-related cancer from any single imaging procedure is 

extremely low; however, repeated examinations may lead 

to a substantial increase in such risk [20]. Unfortunately, 

epidemiologic literature on low-dose effects of ionizing 

radiations is limited by statistical power. In the future, the 

opportunity to exploit large databases will help clarify the 

relationship between cancer-induced pathologies and low-

dose radiation levels [21, 22]. In particular, the introduc-

tion of radiation dose registries could be a valuable tool for 

patient monitoring and optimization of dose delivery. Col-

lected information should include (1) radiation dose distri-

butions and dose–volume metrics from treatment planning 

in radiotherapy (i.e., dose–volume histograms, the volume 

receiving a certain dose, minimum dose to a given volume, 

mean, maximum, and minimum dose); (2) X-ray doses 

from radiological imaging (i.e., volumetric CT dose index, 

dose-length product, dose-area product); and (3) gamma-

ray and other radioisotopes radiation doses from nuclear 

medicine imaging and treatment. A radiation dose registry 

may allow clinicians to compare dose levels to the averages 

of other national and international centers, in order to suc-

cessfully implement low-dose protocols. On the side, this 

will favor standardization, create higher patient confidence 

in radiation safety, and offer the opportunity for better qual-

ity assessment.

Regulations and guidelines, such as the European direc-

tive Euratom 97/43, 2013/59/EURATOM, and the Ameri-

can College of Radiology dose Whitepaper, express the 

need for facilities to track radiation dose for patient and 

population, and support the implementation for dose reg-

istries. In particular, the European directive 2013/59/
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EURATOM points out that health authorities will be more 

pervasive on inspecting the dosimetry applied to patients. 

Integrating the Healthcare Enterprise (IHE—www.ihe.net) 

is an initiative of professional societies aimed at collaborat-

ing with the industry in order to coordinate standards-based 

solutions to problems that span multiple vendors systems. 

The new IHE radiation exposure monitoring (REM) Profile 

facilitates the collection and distribution of the estimated 

patient radiation exposure information resulting from imag-

ing procedures and provides an implementation guide for 

vendors. By following this guide and participating in IHE 

Connectathon, vendors can release products that will inter-

operate to provide an exposure monitoring pipeline (http://

www.aapm.org/meetings/amos2/pdf/42-12234-94897-404.

pdf).

Some healthcare companies have already developed 

web-based dose management software to track and analyze 

patient radiation and iodine exposure across multi-facility, 

multi-modality, and multi-vendor imaging environments. 

These systems enable healthcare professionals to monitor 

radiation exposure and contrast media injection dose to 

their patients. In addition, these devices allow optimiza-

tion of acquisition protocols in order to find the right bal-

ance between image quality and dose, minimizing the risk 

of radiation-induced cancers (http://www.dicardiology.

com/article/software-help-manage-medical-imaging-radia-

tion-dose). On the technical side, there are several crucial 

aspects of dose tracking that deserve to be remembered. 

The first is dose capture: non-DICOM-SR compatible CT 

scanners store dose information as images rather than in 

numerical form, requiring an optical character recognition 

algorithm to capture the data. Second, information has to 

be associated with the patient to be exportable to dose reg-

istries such as the American College of Radiology (ACR) 

Dose Index Registry (DIR). This database, opened in 2011, 

represents the most substantial effort to standardize radia-

tion dose across the United States. Information related to 

dose indices to regional and national values is collected, 

anonymized, and stored across different care services. 

In 2013, the registry achieved dose index information on 

5.5 million CT examinations across 750 registered facili-

ties [23]. DIR is a data registry that allows facilities to 

compare their CT dose indices to regional and national 

values. Institutions are provided with periodic feedback 

reports comparing their results by body part and exam type 

to aggregate results (http://www.acr.org/Quality-Safety/

National-Radiology-Data-Registry/Dose-Index-Registry).

Big data and radiation oncology

Big data repositories include detailed 3-dimensional dosi-

metric and imaging data, and their changes over time. 

Of these, the National Radiation Oncology Registry was 

designed to collect information on cancer care delivery 

among patients treated with radiation therapy [24, 25]. 

Predictive models can be applied to the collected treat-

ment variables to assess patient outcome. In a pilot project, 

prostate cancer was selected as the initial disease site, and 

information was collected on clinical features, toxicity, and 

spatial and temporal dose distribution. Thanks to this pilot 

study, researchers may now identify best strategy options 

that allow patients to safely choose to do nothing or opt for 

mild treatments or surgery [26]. In the era of genomics, one 

may envision leveraging large repositories with detailed 

radiation therapy data, imaging data, and genomic pro-

files of tumor and normal tissue samples in order to better 

understand predictors of tumor control and risk of normal 

tissue injury, providing radiation oncologists the opportu-

nity to potentially offer personalized dose prescriptions 

improving tumor control and reducing toxicity [7, 27].

Predicting renal damage

In recent years, the study of acute kidney injury has been 

facilitated by the increasing availability of stored demo-

graphic and clinical patient data [28, 29]. The Chronic 

Database of Kidney Diseases (CDKD), for example, is a 

database system designed to hold personal and laboratory 

investigatory details of patients with renal disease (http://

www.cdkd.org/). Its goal is to make kidney-related physi-

ological data easily available to the scientific community. 

CDKD currently contains more than 10,000 public data 

entries, available upon free registration  [30]. Unfortu-

nately, most datasets do not provide standardized informa-

tion, and do not allow differentiation between acute and 

chronic disease. This heterogeneity may hinder compari-

sons and underestimate disease burden, limiting its applica-

tion in a clinical setting [28].

Collecting information on kidney functional status could 

be particularly useful in cancer patients. These patients 

frequently repeat CT examinations for staging or assess-

ment of response to treatment, in which administration of 

intravenous iodine contrast agent is generally required. It 

is well known that iodinated contrast agents are associated 

with an increased risk of contrast-induced nephrotoxicity; 

the risk is particularly high in patients that have impaired 

renal function and diabetes [31]. Furthermore, renal fail-

ure in oncological patients is often multifactorial and more 

common than in the general population [32]. The risk of 

complications from contrast medium administration is 

compounded by advanced age, dehydration, the number 

of times CT is repeated, and co-administration of nephro-

toxic chemotherapeutic drugs. Thus, identification of fac-

tors predicting contrast-induced nephrotoxicity is important 

to avoid potentially serious complications, related to acute 

deterioration of kidney function [31].
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Tracking patient workflow

Oncological patient management is more and more a 

complex matter requiring constant monitoring throughout 

chemotherapy lines, radiation therapy sessions, scheduled 

follow-up assessments, etc. Thus, information collected 

from the very first diagnosis to outcome of every single 

patient is growing fast. To date, most of this information is 

passively accumulated by hospitals within PACS and RIS 

facilities. Conversely, in an integrated healthcare system, 

where interdisciplinary teams of specialists act together, 

all information should be linked with the aim of optimizing 

individual patient care, paving the way to truly personal-

ized medicine.

To optimize current oncological workflows, it will be 

necessary to develop event-tracking systems in which 

monitoring points based on checklists are implemented. 

A good system should be able to identify workflow issues 

and technical errors in every step of patient management, 

advancing department quality control and improving exist-

ing processes or implementing new workflows [33]. Each 

patient in the processing chain will thus contribute to help 

clinicians and technicians to detect workflow inefficiencies, 

as incorrectly transmitted images or information during 

disease assessment, or delays in scheduled follow-ups. A 

patient tracking system would also simplify pinpointing the 

sources of error or mismatching within processes, produc-

ing as a result an honest picture of the current events, and 

enhance the ability to respond in real time. The opportu-

nity at hand using big data is the ability to scan and connect 

massive repositories with the aim of providing new insights 

on patient workflow. Correlating clinical data with costs, 

outcomes, and performances will also support the develop-

ment of evidence-based guidelines and clinical best prac-

tices. In the end, again, all of this will improve patient’s 

access to treatment, reduce therapy side effects, and con-

tribute to improve his quality of life and, on a population 

scale, allow healthcare systems to save more lives and con-

tain costs.

Conclusions

The possibility to extract new knowledge from the huge 

amount of increasingly available unstructured data is 

crucial for advances in cancer diagnosis and treatment. 

Indeed, the strength of big data lies in its volume and 

variety. However, this process is not without challenges 

as big data analysis also has several intrinsic limitations, 

which limit its use. First, big data is usually extremely het-

erogeneous, can be missing, non-interpretable, conflict-

ing, inaccurate, or stored in different locations. Second, it 

may be beyond human capabilities to analyze. Indeed, the 

very point of looking to big data is “to identify patterns 

that create answers to questions you didn’t even know to 

ask” [34]. Finally, big data analysis may breach patient 

privacy. Therefore, the success of big data in creating 

healthcare value may require some changes in the current 

polices, to balance the potential societal benefits of big data 

approaches and the protection of patients’ confidentiality 

[35].

In conclusion, the benefits of large-scale data mining to 

the oncologic patient are slowly emerging. Big data initia-

tives could be instrumental in improving the management 

and the quality of life of each individual cancer patient 

based on the results of imaging biomarker analysis or on 

the implementation of event-tracking systems. On a macro-

economics level, big data could support the implementation 

of evidence-based guidelines and of quality control meas-

ures, in the end reducing system inefficiencies. Because of 

their intrinsic heterogeneity, it will be very challenging to 

fully exploit big data.
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