64 research outputs found

    Nationwide Survey Reveals High Prevalence of Non-Swimmers among Children with Congenital Heart Defects

    Get PDF
    Background: Physical activity is important for children with congenital heart defects (CHD), not only for somatic health, but also for neurologic, emotional, and psychosocial development. Swimming is a popular endurance sport which is in general suitable for most children with CHD. Since we have previously shown that children with CHD are less frequently physically active than their healthy peers, we hypothesized that the prevalence of non-swimmers is higher in CHD patients than in healthy children. Methods: To obtain representative data, we performed a nationwide survey in collaboration with the German National Register of Congenital Heart Defects (NRCHD) and the Institute for Sport Sciences of the Karlsruhe Institute for Technology (KIT). The questionnaire included questions capturing the prevalence of swimming skills and the timing of swim learning and was part of the “Motorik-Modul” (MoMo) from the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). A representative age-matched subset of 4569 participants of the MoMo wave two study served as a healthy control group. Results: From 894 CHD-patients (mean age of 12.5 ± 3.1 years), the proportion of non-swimmers in children with CHD was significantly higher (16% versus 4.3%; p < 0.001) compared to healthy children and was dependent on CHD severity: Children with complex CHD had an almost five-fold increased risk (20.4%) of being unable to swim, whereas in children with simple CHD, the ability to swim did not differ significantly from their healthy reference group (5.6% vs. 4.3% non-swimmers (p = not significant). Conclusions: According to our results, one in five patients with complex CHD are non-swimmers, a situation that is concerning in regard of motoric development, inclusion and integration, as well as prevention of drowning accidents. Implementation of swim learning interventions for children with CHD would be a reasonable approach

    Physical Self-Concept and Physical Activity in Children with Congenital Heart Defects—Can We Point Out Differences to Healthy Children to Promote Physical Activity?

    Get PDF
    Objective: Children with congenital heart defects (CHD) are at high risk for cardiovascular disease in addition to their congenital disease, so it is important to motivate this group of patients to live a physically active lifestyle. A potential influencing determinant of younger children’s physical performance is the physical self-concept. The objective of the present study was first to evaluate the correlation between the physical self-concept (PSC) and the participation in physical activities (PA) of a representative group of children with congenital heart disease (CHD), and second to point out differences in comparison to their healthy peer group. Methods: Using the database of PA of the S-BAHn-Study we focused on physical self-concept assessed by the German version of the Physical Self-Description Questionnaire. We compare the obtained data of children with CHD to a representative age-matched sample of 3.385 participants of the Motorik Modul Study. Results: N = 1.198 complete datasets could be included in the analyses. The mean age of patients was 11.6 ± 3.1 years. For the total cohort of patients with CHD and the reference group, PA correlated significantly with a positive PSC (p 0.24). Conclusions: According to this representative survey, there is a clear relation between PA and PSC in the cohort of healthy children and the group of children with CHD throughout the severity of their heart defects. Although PSC did not differ in patients with simple CHD and their healthy peer group, PA was significantly reduced. This gap invites us to reflect on how we could break new ground to promote a physically active lifestyle in children with CHD regardless of the severity of their cardiac defects

    Genetic testing and blood biomarkers in paediatric pulmonary hypertension. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK

    Get PDF
    Childhood-onset pulmonary arterial hypertension (PAH) is considered complex and multifactorial, with relatively poor estimates of the natural history of the disease. Strategies allowing earlier detection, establishment of disease aetiology together with more accurate and sensitive biomarkers could enable better estimates of prognosis and individualise therapeutic strategies. Evidence is accumulating that genetic defects play an important role in the pathogenesis of idiopathic and hereditary forms of PAH. Altogether nine genes have been reported so far to be associated with childhood onset PAH suggesting that comprehensive multigene diagnostics can be useful in the assessment. Identification of disease-causing mutations allows estimates of prognosis and forms the most effective way for risk stratification in the family. In addition to genetic determinants the analysis of blood biomarkers are increasingly used in clinical practice to evaluate disease severity and treatment responses. As in genetic diagnostics, a multiplex approach can be helpful, as a single biomarker for PAH is unlikely to meet all requirements. This consensus statement reviews the current evidence for the use of genetic diagnostics and use of blood biomarkers in the assessment of paediatric patients with PAH

    Heart Rate Response During Treadmill Exercise Test in Children and Adolescents With Congenital Heart Disease

    Get PDF
    Background: Impaired exercise capacity is a common feature of congenital heart disease (CHD). In adults with CHD, it has been shown that impaired heart rate response during exercise may contribute to exercise limitation. Systematic data in children and adolescents on this topic is limited. We therefore purposed to assess heart rate response during treadmill exercise testing in children and adolescents with CHD compared to healthy controls.Methods: One hundred and sixty three children and adolescents (103 with CHD, median age 15 years and 60 age-matched controls) performed cardiopulmonary exercise testing and were included in this study. Beyond peak oxygen consumption, increase in heart rate from resting level to peak exercise (heart rate reserve) and decrease of heart rate after peak exercise (heart rate recovery) were measured. Chronotropic index was defined as percentage of age predicted maximal heart rate reserve. According to data from adults on bicycle exercise, chronotropic incompetence was assumed for chronotropic index below 0.8.Results: While resting heart rate was similar between both groups, peak heart rate, heart rate reserve as well as chronotropic index were lower in the CHD group than in controls. Chronotropic index was lowest in patients with single ventricle hemodynamics and correlated with peak oxygen consumption. Heart rate recovery was impaired in the CHD group 1 and 2 min after peak exercise compared to controls and correlated with peak oxygen consumption. Chronotropic index below 0.8 was a relatively frequent finding even in the control group suggesting that the threshold of 0.8 appears inadequate for the identification of chronotropic incompetence using treadmill exercise testing in children. After normalizing to the 2.5th chronotropic index percentile of the control group we obtained a chronotropic incompetence threshold of 0.69.Conclusion: As an adjunct to measurement of peak oxygen consumption, heart rate response to exercise appears to be a physiologically important diagnostic parameter in children and adolescents with CHD. However, interpretation of heart rate response needs to consider specific age characteristics and the mode of exercise test. Our data may help future studies on chronotropic incompetence using treadmill ergometer protocols in children and adolescents

    Genetic testing and blood biomarkers in paediatric pulmonary hypertension. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK

    Get PDF
    Childhood-onset pulmonary arterial hypertension (PAH) is considered complex and multifactorial, with relatively poor estimates of the natural history of the disease. Strategies allowing earlier detection, establishment of disease aetiology together with more accurate and sensitive biomarkers could enable better estimates of prognosis and individualise therapeutic strategies. Evidence is accumulating that genetic defects play an important role in the pathogenesis of idiopathic and hereditary forms of PAH. Altogether nine genes have been reported so far to be associated with childhood onset PAH suggesting that comprehensive multigene diagnostics can be useful in the assessment. Identification of disease-causing mutations allows estimates of prognosis and forms the most effective way for risk stratification in the family. In addition to genetic determinants the analysis of blood biomarkers are increasingly used in clinical practice to evaluate disease severity and treatment responses. As in genetic diagnostics, a multiplex approach can be helpful, as a single biomarker for PAH is unlikely to meet all requirements. This consensus statement reviews the current evidence for the use of genetic diagnostics and use of blood biomarkers in the assessment of paediatric patients with PAH

    Heart rate variability is related to disease severity in children and young adults with pulmonary hypertension

    Get PDF
    Background: Pulmonary hypertension (PH) is frequently associated with an increase in sympathetic tone. This may adversely affect cardiac autonomic control. Knowledge about the clinical impact of autonomic dysfunction in patients with PH is limited. We aimed to assess whether parameters of heart rate variability (HRV) are related to disease severity in children with PH. Methods: Parameters of HRV [SDNN, standard deviation of normal-to-normal intervals and SDANN, standard deviation of mean values for normal-to-normal intervals over 5 min] were determined from Holter electrocardiograms of 17 patients with PH without active intracardial shunt (10 female, mean age 12.8 ± 8.7 years). Patients were allocated to two groups according to their disease severity: patients with moderate PH [ratio of pulmonary to systemic arterial pressure (PAP/SAP ratio) 0.75) (n = 6). An additional group of five adolescents with Eisenmenger syndrome (PAP/SAP ratio 1.13 ± 0.36) was included. Results: Children with severe PH had significantly lower values of HRV [SDNN (73.8 ± 21.1 vs. 164.9 ± 38.1 ms), SDANN (62.2 ± 19.0 vs. 139.5 ± 33.3 ms)] compared to patients with moderate PH (p = 0.0001 for all). SDNN inversely correlated with ratio of PAP/SAP of PH patients without shunt (r = -0.82; p = 0.0002). Eisenmenger patients showed no significant difference of HRV [SDNN 157.6 ± 43.2 ms, SDANN 141.2 ± 45.3 ms] compared to patients with moderate PH without shunt (p > 0.05 for all). Conclusion: According to our results, children with severe PH may have alterations in HRV. Since HRV appears to be related to disease severity, it may therefore serve as an additional diagnostic marker of PH. Remarkably, although Eisenmenger patients have systemic pulmonary arterial pressures, they seem to have preserved HRV, which might reflect a more favorable autonomic adaptation

    Potts Shunt to Be Preferred Above Atrial Septostomy in Pediatric Pulmonary Arterial Hypertension Patients: A Modeling Study

    Get PDF
    Aims: To quantitatively evaluate the basic pathophysiological process involved in the creation of Eisenmenger syndrome in pediatric pulmonary arterial hypertension (PAH) patients by either atrial septostomy (AS) or Potts shunt (PS) as well as to predict the effects of AS or PS in future PAH patients.Methods: The multi-scale lumped parameter CircAdapt model of the cardiovascular system was used to investigate the effects of AS and PS on cardiovascular hemodynamics and mechanics, as well as on oxygen saturation in moderate to severe PAH. The reference simulation, with cardiac output set to 2.1 l/min and mean systemic pressure to 61 mmHg, was used to create a compensated moderate PAH simulation with mPAP 50 mmHg. Thereupon we created a range of decompensated PAH simulations in which mPAP was stepwise increased from 50 to 80 mmHg. Then we simulated for each level of mPAP the acute effects of either PS or AS with connection diameters ranging between 0–16 mm.Results: For any mPAP level, the effect on shunt flow size is much larger for the PS than for AS. Whereas right ventricular pump work in PS is mainly dependent on mPAP, in AS it depends on both mPAP and the size of the defect. The effects on total cardiac pump work were similar for PS and AS. As expected, PS resulted in a drastic decrease of lower body oxygen saturation, whereas in AS both the upper and lower body oxygen saturation decreased, though not as drastically as in PS.Conclusion: Our simulations support the opinion that a PS can transfer suprasystemic PAH to an Eisenmenger physiology associated with a right-to-left shunt at the arterial level. Contrary to the current opinion that PS in PAH will decompress and unload the right ventricle, we show that while a PS does lead to a decrease in mPAP toward mean systemic arterial pressure, it does not unload the right ventricle because it mainly diverts flow from the pulmonary arterial system toward the lower body systemic arteries

    Hemodynamic and prognostic impact of the diastolic pulmonary arterial pressure in children with pulmonary arterial hypertension-a registry-based analysis

    Get PDF
    BACKGROUND: Diastolic pulmonary arterial pressure (dPAP) is regarded to be less sensitive to flow metrics as compared to mean PAP (mPAP), and was therefore proposed for the assessment of a precapillary component in patients with postcapillary pulmonary hypertension (PH). To analyze the diagnostic and prognostic impact of dPAP in patients with pure precapillary PH, we purposed to compare the correlation between dPAP and mPAP, as well as hemodynamically-derived calculations [ratio of PAP to systemic arterial pressure (PAP/SAP), pulmonary vascular resistance index (PVRI), transpulmonary gradient (TPG)], using both dPAP and mPAP, at rest and during acute vasoreactivity testing (AVT) in children with idiopathic or heritable pulmonary arterial hypertension (IPAH/HPAH). Furthermore, we aimed to assess the association of these metrics (at baseline and changes after AVT) with transplant-free survival. METHODS: We conducted a retrospective analysis of the TOPP (Tracking Outcomes and Practice in Pediatric Pulmonary Hypertension) registry including 246 IPAH/HPAH patients. Of these, 45 children (18.3%) died, and 13 (5.3%) received lung transplantation during the observation period. RESULTS: dPAP and mPAP-derived variables showed almost linear relationship. Higher mPAP/mSAP, and dPAP-/mPAP-derived PVRI at rest was associated with time to death/transplantation. At maximum AVT-response, the decrease of dPAP and mPAP, diastolic pulmonary gradient (DPG) and TPG, as well as dPAP/dSAP and mPAP/mSAP was associated with time to death/transplantation, showing higher significance than corresponding baseline values. Remarkably, no predictive value was found for PVRI-reduction during AVT, neither dPAP- nor mPAP-derived. CONCLUSIONS: There is a strong relationship between dPAP and mPAP-derived variables. According to our results, hemodynamics during AVT (irrespectively of dPAP- or mPAP-derived) may have more prognostic implications than resting hemodynamics in children with IPAH/HPAH, except for PVRI

    Biventricular structural and functional responses to aortic constriction in a rabbit model of chronic right ventricular pressure overload

    Get PDF
    Objectives: Chronic right ventricular (RV) pressure overload results in pathologic RV hypertrophy and diminished RV function. Although aortic constriction has been shown to improve systolic function in acute RV failure, its effect on RV responses to chronic pressure overload is unknown. Methods: Adjustable vascular banding devices were placed on the main pulmonary artery and descending aorta. In 5 animals (sham group), neither band was inflated. In 9 animals (PAB group), only the pulmonary arterial band was inflated, with adjustments on a weekly basis to generate systemic or suprasystemic RV pressure at 28 days. In 9 animals, both pulmonary arterial and aortic devices were inflated (PAB+AO group), the pulmonary arterial band as for the PAB group and the aortic band adjusted to increase proximal systolic blood pressure by approximately 20 mm Hg. Effects on the functional performance were assessed 5 weeks after surgery by conductance catheters, followed by histologic and molecular assessment. Results: Contractile performance was significantly improved in the PAB+AO group versus the PAB group for both ventricles. Relative to sham-operated animals, both banding groups showed significant differences in myocardial histologic and molecular responses. Relative to the PAB group, the PAB+AO group showed significantly decreased RV cardiomyocyte diameter, decreased RV collagen content, and reduced RV expression of endothelin receptor type B, matrix metalloproteinase 9, and transforming growth factor beta genes. Conclusions: Aortic constriction in an experimental model of chronic RV pressure overload not only resulted in improved biventricular systolic function but also improved myocardial remodeling. These data suggest that chronically increased left ventricular afterload leads to a more physiologically hypertrophic response in the pressure-overloaded RV. (J Thorac Cardiovasc Surg 2012;144:1494-501)Deutsche Herzstiftung e.V., Frankfurt, German

    Executive summary. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK

    Get PDF
    The European Paediatric Pulmonary Vascular Disease (PVD) Network is a registered, non-profit organisation that strives to define and develop effective, innovative diagnostic methods and treatment options in all forms of paediatric pulmonary hypertensive vascular disease, including specific forms such as pulmonary arterial hypertension (PAH)-congenital heart disease, pulmonary hypertension (PH) associated with bronchopulmonary dysplasia, persistent PH of the newborn, and related cardiac dysfunction. Methods The writing group members conducted searches of the PubMed/MEDLINE bibliographic database (1990-2015) and held five face-to-face meetings with votings. Clinical trials, guidelines, and reviews limited to paediatric data were searched using the terms 'pulmonary hypertension' and 5-10 other keywords, as outlined in the other nine articles of this special issue. Class of recommendation (COR) and level of evidence (LOE) were assigned based on European Society of Cardiology/American Heart Association definitions and on paediatric data only, or on adult studies that included >10% children. Results A total of 9 original consensus articles with graded recommendations (COR/LOE) were developed, and are summarised here. The topics included diagnosis/monitoring, genetics/biomarker, cardiac catheterisation, echocardiography, cardiac magnetic resonance/chest CT, associated forms of PH, intensive care unit/ventricular assist device/lung transplantation, and treatment of paediatric PAH. Conclusions The multipaper expert consensus statement of the European Paediatric PVD Network provides a specific, comprehensive, detailed but practical framework for the optimal clinical care of children with PH
    corecore