58 research outputs found

    Finite-Difference Time-Domain Simulation of Strong-Field Ionization:A Perfectly Matched Layer Approach

    Get PDF
    A Finite-Difference Time-Domain (FDTD) scheme with Perfectly Matched Layers (PMLs) is considered for solving the time-dependent Schr\"{o}dinger equation, and simulate the ionization of an electron initially bound to a one-dimensional δ\delta-potential, when applying a strong time-oscillating electric field. The performance of PMLs based on different absorption functions are compared, where we find slowly growing functions to be preferable. PMLs are shown to be able to reduce the computational domain, and thus the required numerical resources, by several orders of magnitude. This is demonstrated by testing the proposed method against an FDTD approach without PMLs and a very large computational domain. We further show that PMLs outperform the well known Exterior Complex Scaling (ECS) technique for short-range potentials when implemented in FDTD, though ECS remains superior for long-range potentials. The accuracy of the method is furthermore demonstrated by comparing with known numerical and analytical results for the δ\delta-potential

    Energy dependence of coherent photonuclear production of J/ψ mesons in ultra-peripheral Pb-Pb collisions at sNN \sqrt{{\textrm{s}}_{\textrm{NN}}} = 5.02 TeV

    No full text
    The cross section for coherent photonuclear production of J/ψ is presented as a function of the electromagnetic dissociation (EMD) of Pb. The measurement is performed with the ALICE detector in ultra-peripheral Pb-Pb collisions at a centre-of-mass energy per nucleon pair of sNN \sqrt{{\textrm{s}}_{\textrm{NN}}} = 5.02 TeV. Cross sections are presented in five different J/ψ rapidity ranges within |y| < 4, with the J/ψ reconstructed via its dilepton decay channels. In some events the J/ψ is not accompanied by EMD, while other events do produce neutrons from EMD at beam rapidities either in one or the other beam direction, or in both. The cross sections in a given rapidity range and for different configurations of neutrons from EMD allow for the extraction of the energy dependence of this process in the range 17 < WγPb,n_{γ Pb,n} < 920 GeV, where WγPb,n_{γ Pb,n} is the centre-of-mass energy per nucleon of the γPb system. This range corresponds to a Bjorken-x interval spanning about three orders of magnitude: 1.1 × 105^{−5} < x < 3.3 × 102^{−2}. In addition to the ultra-peripheral and photonuclear cross sections, the nuclear suppression factor is obtained. These measurements point to a strong depletion of the gluon distribution in Pb nuclei over a broad, previously unexplored, energy range. These results, together with previous ALICE measurements, provide unprecedented information to probe quantum chromodynamics at high energies

    BIBLIOGRAPHY OF WHALING

    No full text

    Energy dependence of coherent photonuclear production of J/ψ mesons in ultra-peripheral Pb-Pb collisions at sNN \sqrt{{\textrm{s}}_{\textrm{NN}}} = 5.02 TeV

    No full text
    International audienceThe cross section for coherent photonuclear production of J/ψ is presented as a function of the electromagnetic dissociation (EMD) of Pb. The measurement is performed with the ALICE detector in ultra-peripheral Pb-Pb collisions at a centre-of-mass energy per nucleon pair of sNN \sqrt{{\textrm{s}}_{\textrm{NN}}} = 5.02 TeV. Cross sections are presented in five different J/ψ rapidity ranges within |y| < 4, with the J/ψ reconstructed via its dilepton decay channels. In some events the J/ψ is not accompanied by EMD, while other events do produce neutrons from EMD at beam rapidities either in one or the other beam direction, or in both. The cross sections in a given rapidity range and for different configurations of neutrons from EMD allow for the extraction of the energy dependence of this process in the range 17 < WγPb,n_{γ Pb,n} < 920 GeV, where WγPb,n_{γ Pb,n} is the centre-of-mass energy per nucleon of the γPb system. This range corresponds to a Bjorken-x interval spanning about three orders of magnitude: 1.1 × 105^{−5} < x < 3.3 × 102^{−2}. In addition to the ultra-peripheral and photonuclear cross sections, the nuclear suppression factor is obtained. These measurements point to a strong depletion of the gluon distribution in Pb nuclei over a broad, previously unexplored, energy range. These results, together with previous ALICE measurements, provide unprecedented information to probe quantum chromodynamics at high energies.[graphic not available: see fulltext
    corecore