18,852 research outputs found

    Solar radiation observation stations with complete listing of data archived by the National Climatic Center, Asheville, North Carolina and initial listing of data not currently archived

    Get PDF
    A listing is provided of organizations taking solar radiation data, the 166 stations where observations are made, the type of equipment used, the form of the recorded data, and the period of operation of each station. Included is a listing of the data from 150 solar radiation stations collected over the past 25 years and stored by the National Climatic Center

    Electric Polarizability of Neutral Hadrons from Lattice QCD

    Full text link
    By simulating a uniform electric field on a lattice and measuring the change in the rest mass, we calculate the electric polarizability of neutral mesons and baryons using the methods of quenched lattice QCD. Specifically, we measure the electric polarizability coefficient from the quadratic response to the electric field for 10 particles: the vector mesons ρ0\rho^0 and K∗0K^{*0}; the octet baryons n, ÎŁ0\Sigma^0, Λo0\Lambda_{o}^{0}, Λs0\Lambda_{s}^{0}, and Ξ0\Xi^0; and the decouplet baryons Δ0\Delta^0, Σ∗0\Sigma^{*0}, and Ξ∗0\Xi^{*0}. Independent calculations using two fermion actions were done for consistency and comparison purposes. One calculation uses Wilson fermions with a lattice spacing of a=0.10a=0.10 fm. The other uses tadpole improved L\"usher-Weiss gauge fields and clover quark action with a lattice spacing a=0.17a=0.17 fm. Our results for neutron electric polarizability are compared to experiment.Comment: 25 pages, 20 figure

    Butterfly diagram of a Sun-like star observed using asteroseismology

    Full text link
    Stellar magnetic fields are poorly understood but are known to be important for stellar evolution and exoplanet habitability. They drive stellar activity, which is the main observational constraint on theoretical models for magnetic field generation and evolution. Starspots are the main manifestation of the magnetic fields at the stellar surface. In this study we measure the variation of their latitude with time, called a butterfly diagram in the solar case, for the solar analogue HD 173701 (KIC 8006161). To that effect, we use Kepler data, to combine starspot rotation rates at different epochs and the asteroseismically determined latitudinal variation of the stellar rotation rates. We observe a clear variation of the latitude of the starspots. It is the first time such a diagram is constructed using asteroseismic data.Comment: 8 pages, 4 figures, accepted in A&A Letter

    The merging/AGN connection: A case for 3D spectroscopy

    Full text link
    We discuss an ongoing study of the connection between galaxy merging/interaction and AGN activity, based on integral field spectroscopy. We focus on the search for AGN ionization in the central regions of mergers, previously not classified as AGNs. We present here the science case, the current status of the project, and plans for future observations.Comment: 4 pages, 3 figure, Euro3D Science Workshop, Cambridge, May 2003, AN, accepte

    Methods for Reducing False Alarms in Searches for Compact Binary Coalescences in LIGO Data

    Get PDF
    The LIGO detectors are sensitive to a variety of noise transients of non-astrophysical origin. Instrumental glitches and environmental disturbances increase the false alarm rate in the searches for gravitational waves. Using times already identified when the interferometers produced data of questionable quality, or when the channels that monitor the interferometer indicated non-stationarity, we have developed techniques to safely and effectively veto false triggers from the compact binary coalescences (CBCs) search pipeline

    A study of quantum decoherence in a system with Kolmogorov-Arnol'd-Moser tori

    Get PDF
    We present an experimental and numerical study of the effects of decoherence on a quantum system whose classical analogue has Kolmogorov-Arnol'd-Moser (KAM) tori in its phase space. Atoms are prepared in a caesium magneto-optical trap at temperatures and densities which necessitate a quantum description. This real quantum system is coupled to the environment via spontaneous emission. The degree of coupling is varied and the effects of this coupling on the quantum coherence of the system are studied. When the classical diffusion through a partially broken torus is < hbar, diffusion of quantum particles is inhibited. We find that increasing decoherence via spontaneous emission increases the transport of quantum particles through the boundary.Comment: 19 pages including 6 figure

    Using Markov chain Monte Carlo methods for estimating parameters with gravitational radiation data

    Get PDF
    We present a Bayesian approach to the problem of determining parameters for coalescing binary systems observed with laser interferometric detectors. By applying a Markov Chain Monte Carlo (MCMC) algorithm, specifically the Gibbs sampler, we demonstrate the potential that MCMC techniques may hold for the computation of posterior distributions of parameters of the binary system that created the gravity radiation signal. We describe the use of the Gibbs sampler method, and present examples whereby signals are detected and analyzed from within noisy data.Comment: 21 pages, 10 figure

    Effects of Large-Scale Convection on p-mode Frequencies

    Full text link
    We describe an approach for finding the eigenfrequencies of solar acoustic modes (p modes) in a convective envelope in the WKB limit. This approximation restricts us to examining the effects of fluid motions which are large compared to the mode wavelength, but allows us to treat the three-dimensional mode as a localized ray. The method of adiabatic switching is then used to investigate the frequency shifts resulting from simple perturbations to a polytropic model of the convection zone as well as from two basic models of a convective cell. We find that although solely depth-dependent perturbations can give frequency shifts which are first order in the strength of the perturbation, models of convective cells generate downward frequency shifts which are second order in the perturbation strength. These results may have implications for resolving the differences between eigenfrequencies derived from solar models and those found from helioseismic observations.Comment: 27 pages + 6 figures; accepted for publication in Ap

    Renormalization group approach to the critical behavior of the forest fire model

    Full text link
    We introduce a Renormalization scheme for the one and two dimensional Forest-Fire models in order to characterize the nature of the critical state and its scale invariant dynamics. We show the existence of a relevant scaling field associated with a repulsive fixed point. This model is therefore critical in the usual sense because the control parameter has to be tuned to its critical value in order to get criticality. It turns out that this is not just the condition for a time scale separation. The critical exponents are computed analytically and we obtain Îœ=1.0\nu=1.0, τ=1.0\tau=1.0 and Îœ=0.65\nu=0.65, τ=1.16\tau=1.16 respectively for the one and two dimensional case, in very good agreement with numerical simulations.Comment: 4 pages, 3 uuencoded Postcript figure
    • 

    corecore