11 research outputs found

    Uso de serviços de saúde segundo posição socioeconômica em trabalhadores de uma universidade pública

    Get PDF
    OBJETIVO: Analisar o uso de serviços de saúde segundo posição socioeconômica em trabalhadores de uma universidade pública. MÉTODOS: Estudo transversal com 759 funcionários de uma universidade pública brasileira que referiram restrição das atividades habituais por motivo de saúde nos últimos 14 dias. Foram utilizados dados de 2001 provenientes da coorte "Estudo Pró-Saúde", realizado no Rio de Janeiro, RJ. O uso de serviços de saúde foi avaliado pela proxy busca por assistência de saúde e tipo de serviço. A presença de variações adicionais na morbidade foi verificada pelo tempo de restrição. Foram analisados os marcadores de escolaridade, renda e ocupação e calculadas razões de proporções brutas e ajustadas do uso e por tipo de serviço. RESULTADOS: Nível ocupacional foi o indicador de maior desigualdade no uso de serviços de saúde. Após o ajuste por sexo, idade e demais marcadores de posição socioeconômica, a razão de proporção de uso de assistência de saúde entre trabalhadores de rotina manual foi 1,31 (IC95% 1,11;1,55) e entre trabalhadores de rotina não-manual foi 1,21 (IC95% 1,06;1,37), comparados aos profissionais, considerada a categoria de referência. CONCLUSÕES: Padrão de desigualdade social foi observado no uso de serviços de saúde em favor dos indivíduos de menor posição socioeconômica, mesmo após o controle por necessidade, com destaque para o marcador de ocupação. As diferenças remanescentes na morbidade dos indivíduos parecem não ser suficientes para explicar o achado e fatores ocupacionais podem exercer maior influência no uso de serviços de saúde dessa população.OBJECTIVE: To analyze the use of health services and socioeconomic status among a public university workers. METHODS: A cross-sectional study with 759 workers at a Brazilian public university who reported health-related restrictions of their usual activities in the previous 14 days, was carried out. Data were supplied by the 2001 cohort of the "Pró-Saúde Study" in Rio de Janeiro, Southeastern Brazil. Health services use was assessed with a proxy for "seeking health care" and according to the type of service. The presence of additional variation in morbidity was verified by time restriction. Schooling, income and occupation markers were analyzed, and crude and adjusted proportion ratios of use and types of service were calculated. RESULTS: The occupation level was the indicator of the greatest inequality in health services use. After adjustments for gender, age and the other socioeconomic status markers, the ratio of the proportion of health care use was 1.31 for manual workers (95%CI: 1.11;1.55) and 1.21 for non-manual workers (95%CI: 1.06;1.37) compared to the reference category of professionals. CONCLUSIONS: A pattern of social inequality was identified in health services use. Even after an adjustment for health need, the pattern favored individuals with lower socioeconomic status, particularly for the occupation marker. Remaining differences in individual morbidities do not explain this finding. Rather, occupational factors may exert a greater influence on health services use in this population.OBJETIVO: Analizar el uso de servicios de salud según posición socioeconómica en trabajadores de una universidad pública. MÉTODOS: Estudio transversal con 759 funcionarios de una universidad pública brasileña que refirieron restricción de las actividades habituales por motivo de salud en los últimos 14 días. Se utilizaron datos de 2001 provenientes de la cohorte "Estudio Pro-Salud", realizado en Rio de Janeiro, Sureste de Brasil. El uso de servicios de salud fue evaluado por la proxy "búsqueda por asistencia de salud" y "tipo de servicio". La presencia de variaciones adicionales en la morbilidad fue verificada por el tiempo de restricción. Se analizaron los marcadores de escolaridad, renta y ocupación y calculadas tasas de proporciones brutas y ajustadas del uso y por tipo de servicio. RESULTADOS: El nivel ocupacional fue el indicador de mayor desigualdad en el uso de servicios de salud. Posterior al ajuste por sexo, edad y demás marcadores de posición socioeconómica, la tasa de proporción de uso de asistencia de salud entre trabajadores de rutina manual fue 1,31 (IC95% 1,11;1,55) y entre trabajadores de rutina no manual fue 1,21 (IC95% 1,06;1,37), comparados con los profesionales considerados en la categoría de referencia. CONCLUSIONES: El patrón de desigualdad social fue observado en el uso de servicios de salud a favor de los individuos de menor posición socioeconómica, aún después del control por necesidad, resultando el marcador ocupacional. Las diferencias remanentes en la morbilidad de los individuos parecen no ser suficientes para explicar el resultado y factores ocupacionales pueden ejercer mayor influencia en el uso de servicios de salud de esta población

    Seeing the other side: Perspective taking and the moderation of extremity

    No full text
    Recognizing the reasonableness of others' positions is important for conflict reduction, but is notoriously hard. We tested a perspective-taking approach to decreasing attitude entrenchment. Participants were held accountable in a task in which they wrote about a controversial issue from the perspective of a partner with an opposing viewpoint. This approach was effective at changing views on controversial issues-in Study 1 on weight discrimination, an issue participants were unlikely to have thought much about, and in Study 2 on abortion, where beliefs tend to be more deeply held. Studies 3 and 4 showed this change only took place under conditions where participants met the individual with an opposing view in person, and where that individual would see the perspective-taking effort. These results suggest that it is possible to reduce attitude entrenchment by encouraging people to think about the opposing perspective of another, as long as there is real contact and accountability

    Multi-pollutant Modeling Through Examination of Susceptible Subpopulations Using Profile Regression.

    No full text
    PURPOSE OF REVIEW: The inter-correlated nature of exposure-based risk factors in environmental health studies makes it a challenge to determine their combined effect on health outcomes. As such, there has been much research of late regarding the development and utilization of methods in the field of multi-pollutant modeling. However, much of this work has focused on issues related to variable selection in a regression context, with the goal of identifying which exposures are the "bad actors" most responsible for affecting the health outcome of interest. However, the question addressed by these approaches does not necessarily represent the only or most important questions of interest in a multi-pollutant modeling context, where researchers may be interested in health effects from co-exposure patterns and in identifying subpopulations associated with patterns defined by different levels of constituent exposures. RECENT FINDINGS: One approach to analyzing multi-pollutant data is to use a method known as Bayesian profile regression, which aids in identifying susceptible subpopulations associated with exposure mixtures defined by different levels of each exposure. Identification of exposure-level patterns that correspond to a location may provide a starting point for policy-based exposure reduction. Also, in a spatial context, identification of locations with the most health-relevant exposure-mixture profiles might provide further policy relevant information. In this brief report, we review and describe an approach that can be used to identify exposures in subpopulations or locations known as Bayesian profile regression. An example is provided in which we examine associations between air pollutants, an indicator of healthy food retailer availability, and indicators of poverty in Los Angeles County. A general tread suggesting that vulnerable individuals are more highly exposed and have limited access to healthy food retailers is observed, though the associations are complex and non-linear
    corecore