3,001 research outputs found

    Perancangan Buku Ilustrasi Batik Tuban sebagai Upaya Pelestarian Nilai-nilai Budaya

    Full text link
    The emergence of the phenomenon of shifting cultural values contained in the motif by economic function raises concerns about the preservation of classic Indonesian batik motifs, especially the classic motifs of Tuban. Therefore, it takes a media design information in the form of book illustration to raise cultural values such as meaning, philosophy and myths contained in the classical batik Tuban. This design is done with the approach of observation, interviews and existing studies using the keyword viewpoint literature review results, namely the aesthetic, social, cultural, self-image and cultural products. By using descriptive-qualitative method of analysis that is supported by indicators STP and USP (Unique Selling Proposition) obtained "Covert charm" as a design concept and “Canting Batik Tuban" as the title of a book with manual drawing illustrations as main illustration. To determine the effectiveness, feasibility and suitability of the work used the test results of the questionnaire design through Likert scale. From the results of the correlation analysis of the design testing, it was found that all of the results of the questionnaire statements have a significant correlation so as to fulfill the purpose of the book value of the loading statement, 242- , 362 and the mean between 4.27 to 4.62

    From quantum pulse gate to quantum pulse shaper -- enigneered frequency conversion in nonlinear optical waveguides

    Full text link
    Full control over the spatio-temporal structure of quantum states of light is an important goal in quantum optics, to generate for instance single-mode quantum pulses or to encode information on multiple modes, enhancing channel capacities. Quantum light pulses feature an inherent, rich spectral broadband-mode structure. In recent years, exploring the use of integrated optics as well as source-engineering has led to a deep understanding of the pulse-mode structure of guided quantum states of light. In addition, several groups have started to investigate the manipulation of quantum states by means of single-photon frequency conversion. In this paper we explore new routes towards complete control of the inherent pulse-modes of ultrafast pulsed quantum states by employing specifically designed nonlinear waveguides with adapted dispersion properties. Starting from our recently proposed quantum pulse gate (QPG) we further generalize the concept of spatio-spectral engineering for arbitrary \chitwo-based quantum processes. We analyse the sum-frequency generation based QPG and introduce the difference-frequency generation based quantum pulse shaper (QPS). Together, these versatile and robust integrated optics devices allow for arbitrary manipulations of the pulse-mode structure of ultrafast pulsed quantum states. The QPG can be utilized to select an arbitrary pulse mode from a multimode input state, whereas the QPS enables the generation of specific pulse modes from an input wavepacket with Gaussian-shaped spectrum.Comment: 21 pages, 9 figure

    Postsynthetic Functionalization of DNA-Nanocomposites with Proteins Yields Bioinstructive Matrices for Cell Culture Applications

    Get PDF
    We report on the directed postsynthetic functionalization of soft DNA nanocomposite materials with proteins. Using the example of the functionalization of silica nanoparticle‐modified DNA polymer materials with agonists or antagonists of the epidermal growth factor receptor EGFR cell membrane receptor, we demonstrate that hierarchically structured interfaces to living cells can be established. Owing to the modular design principle, even complex DNA nanostructures can be integrated into the materials, thereby enabling the high‐precision arrangement of ligands on the lower nanometer length scale. We believe that such complex biohybrid material systems can be used for new applications in biotechnology

    QCDOC: A 10-teraflops scale computer for lattice QCD

    Get PDF
    The architecture of a new class of computers, optimized for lattice QCD calculations, is described. An individual node is based on a single integrated circuit containing a PowerPC 32-bit integer processor with a 1 Gflops 64-bit IEEE floating point unit, 4 Mbyte of memory, 8 Gbit/sec nearest-neighbor communications and additional control and diagnostic circuitry. The machine's name, QCDOC, derives from ``QCD On a Chip''.Comment: Lattice 2000 (machines) 8 pages, 4 figure

    The Effect of Al on the Formation of a CrTaO₄ Layer in Refractory High Entropy Alloys Ta-Mo-Cr-Ti-xAl

    Get PDF
    In this study, the effect of Al on the high temperature oxidation of Al-containing refractory high entropy alloys (RHEAs) Ta-Mo-Cr-Ti-xAl (x = 5; 10; 15; 20 at%) was examined. Oxidation experiments were performed in air for 24 h at 1200 °C. The oxidation kinetics of the alloy with 5 at% Al is notably affected by the formation of gaseous MoO3 and CrO3, while continuous mass gain was detected for alloys with the higher Al concentrations. The alloys with 15 and 20 at% Al form relatively thin oxide scales and a zone of internal corrosion due to the formation of dense CrTaO4 scales at the interface oxide/substrate. The alloys with 5 and 10 at% Al exhibit, on the contrary, thick and porous oxide scales because of fast growing Ta2O5. The positive influence of Al on the formation of Cr2O3 followed by the growth of CrTaO4 to yield a compact scale is explained by getter and nucleation effects

    Status of and performance estimates for QCDOC

    Get PDF
    QCDOC is a supercomputer designed for high scalability at a low cost per node. We discuss the status of the project and provide performance estimates for large machines obtained from cycle accurate simulation of the QCDOC ASIC.Comment: 3 pages 1 figure. Lattice2002(machines
    corecore