94 research outputs found

    Role of lysozyme inhibitors in the virulence of avian pathogenic Escherichia coli

    Get PDF
    Lysozymes are key effectors of the animal innate immunity system that kill bacteria by hydrolyzing peptidoglycan, their major cell wall constituent. Recently, specific inhibitors of the three major lysozyme families occuring in the animal kingdom (c-, g- and i-type) have been discovered in Gram-negative bacteria, and it has been proposed that these may help bacteria to evade lysozyme mediated lysis during interaction with an animal host. Escherichia coli produces two inhibitors that are specific for c-type lysozyme (Ivy, Inhibitor of vertebrate lysozyme; MliC, membrane bound lysozyme inhibitor of c-type lysozyme), and one specific for g-type lysozyme (PliG, periplasmic lysozyme inhibitor of g-type lysozyme). Here, we investigated the role of these lysozyme inhibitors in virulence of Avian Pathogenic E. coli (APEC) using a serum resistance test and a subcutaneous chicken infection model. Knock-out of mliC caused a strong reduction in serum resistance and in in vivo virulence that could be fully restored by genetic complementation, whereas ivy and pliG could be knocked out without effect on serum resistance and virulence. This is the first in vivo evidence for the involvement of lysozyme inhibitors in bacterial virulence. Remarkably, the virulence of a ivy mliC double knock-out strain was restored to almost wild-type level, and this strain also had a substantial residual periplasmic lysozyme inhibitory activity that was higher than that of the single knock-out strains. This suggests the existence of an additional periplasmic lysozyme inhibitor in this strain, and indicates a regulatory interaction in the expression of the different inhibitors

    RpoS-independent evolution reveals the importance of attenuated cAMPCRP regulation in high hydrostatic pressure resistance acquisition in E. coli

    Get PDF
    High hydrostatic pressure (HHP) processing is an attractive non-thermal alternative to food pasteurization. Nevertheless, the large inter- and intra-species variations in HHP resistance among foodborne pathogens and the ease by which they can acquire extreme resistance are an issue of increasing concern. Since RpoS activity has been considered as a central determinant in the HHP resistance of E. coli and its pathovars, this study probed for the potential of an E. coli MG1655 ΔrpoS mutant to acquire HHP resistance by directed evolution. Despite the higher initial HHP sensitivity of the ΔrpoS mutant compared to the wild-type strain, evolved lineages of the former readily managed to restore or even succeed wild-type levels of resistance. A number of these ΔrpoS derivatives were affected in cAMP/CRP regulation, and this could be causally related to their HHP resistance. Subsequent inspection revealed that some of previously isolated HHP-resistant mutants derived from the wild-type strain also incurred a causal decrease in cAMP/CRP regulation. cAMP/CRP attenuated HHP-resistant mutants also exhibited higher resistance to fosfomycin, a preferred treatment for STEC infections. As such, this study reveals attenuation of cAMP/CRP regulation as a relevant and RpoS-independent evolutionary route towards HHP resistance in E. coli that coincides with fosfomycin resistance

    Selection and Development of Nontoxic Nonproteolytic Clostridium botulinum Surrogate Strains for Food Challenge Testing

    Get PDF
    Clostridium botulinum causes severe foodborne intoxications by producing a potent neurotoxin. Challenge studies with this pathogen are an important tool to ensure the safety of new processing techniques and newly designed or modified foods, but they are hazardous and complicated by the lack of an effective selective counting medium. Therefore, this study aimed to develop selectable nontoxic surrogate strains for group II, or nonproteolytic, C. botulinum, which are psychotropic and hence of particular concern in mildly treated, refrigerated foods. Thirty-one natural nontoxic nonproteolytic strains, 16 of which were isolated in this work, were characterized in detail, revealing that 28 strains were genomically and phenotypically indistinguishable from toxic strains. Five strains, representing the genomic and phenotypic diversity of group II C. botulinum, were selected and successfully equipped with an erythromycin (Em) resistance marker in a defective structural phage gene without altering phenotypic features. Finally, a selective medium containing Em, cycloserine (Cs), gentamicin (Gm), and lysozyme (Ly) was developed, which inhibited the background microbiota of commercial cooked ham, chicken filet, and salami, but supported spore germination and growth of the Em-resistant surrogate strains. The surrogates developed in this work are expected to facilitate food challenge studies with nonproteolytic C. botulinum for the food industry and can also provide a safe alternative for basic C. botulinum research.Peer Reviewe

    Hurdle Technology Approach to Control Listeria monocytogenes Using Rhamnolipid Biosurfactant

    Get PDF
    This study evaluates the combination of mild heat with a natural surfactant for the inactivation of L. monocytogenes Scott A in low-water-activity (aw) model systems. Glycerol or NaCl was used to reduce the aw to 0.92, and different concentrations of rhamnolipid (RL) biosurfactant were added before heat treatment (60 °C, 5 min). Using glycerol, RL treatment (50–250 µg/mL) reduced bacterial population by less than 0.2 log and heat treatment up to 1.5 log, while the combination of both hurdles reached around 5.0 log reduction. In the NaCl medium, RL treatment displayed higher inactivation than in the glycerol medium at the same aw level and a larger synergistic lethal effect when combined with heat, achieving ≥ 6.0 log reduction at 10–250 µg/mL RL concentrations. The growth inhibition activity of RL was enhanced by the presence of the monovalent salts NaCl and KCl, reducing MIC values from >2500 µg/mL (without salt) to 39 µg/mL (with 7.5% salt). The enhanced antimicrobial activity of RL promoted by the presence of salts was shown to be pH-dependent and more effective under neutral conditions. Overall, results demonstrate that RL can be exploited to design novel strategies based on hurdle approaches aiming to control L. monocytogenes

    Systematic analysis of the kalimantacin assembly line NRPS module using an adapted targeted mutagenesis approach

    Get PDF
    Kalimantacin is an antimicrobial compound with strong antistaphylococcal activity that is produced by a hybrid trans-acyltransferase polyketide synthase/nonribosomal peptide synthetase system in Pseudomonas fluorescens BCCM_ID9359. We here present a systematic analysis of the substrate specificity of the glycine-incorporating adenylation domain from the kalimantacin biosynthetic assembly line by a targeted mutagenesis approach. The specificity-conferring code was adapted for use in Pseudomonas and mutated adenylation domain active site sequences were introduced in the kalimantacin gene cluster, using a newly adapted ligation independent cloning method. Antimicrobial activity screens and LC-MS analyses revealed that the production of the kalimantacin analogues in the mutated strains was abolished. These results support the idea that further insight in the specificity of downstream domains in nonribosomal peptide synthetases and polyketide synthases is required to efficiently engineer these strains in vivo

    Does virulence assessment of Vibrio anguillarum using sea bass (Dicentrarchus labrax) larvae correspond with genotypic and phenotypic characterization?

    Get PDF
    Background: Vibriosis is one of the most ubiquitous fish diseases caused by bacteria belonging to the genus Vibrio such as Vibrio (Listonella) anguillarum. Despite a lot of research efforts, the virulence factors and mechanism of V. anguillarum are still insufficiently known, in part because of the lack of standardized virulence assays. Methodology/Principal Findings: We investigated and compared the virulence of 15 V. anguillarum strains obtained from different hosts or non-host niches using a standardized gnotobiotic bioassay with European sea bass (Dicentrarchus labrax L.) larvae as model hosts. In addition, to assess potential relationships between virulence and genotypic and phenotypic characteristics, the strains were characterized by random amplified polymorphic DNA (RAPD) and repetitive extragenic palindromic PCR (rep-PCR) analyses, as well as by phenotypic analyses using Biolog's Phenotype MicroArray (TM) technology and some virulence factor assays. Conclusions/Significance: Virulence testing revealed ten virulent and five avirulent strains. While some relation could be established between serotype, genotype and phenotype, no relation was found between virulence and genotypic or phenotypic characteristics, illustrating the complexity of V. anguillarum virulence. Moreover, the standardized gnotobiotic system used in this study has proven its strength as a model to assess and compare the virulence of different V. anguillarum strains in vivo. In this way, the bioassay contributes to the study of mechanisms underlying virulence in V. anguillarum

    The zeamine antibiotics affect the integrity of bacterial membranes

    Get PDF
    The zeamines (zeamine, zeamine I, and zeamine II) constitute an unusual class of cationic polyamine-polyketide-nonribosomal peptide antibiotics produced by Serratia plymuthica RVH1. They exhibit potent bactericidal activity, killing a broad range of Gram-negative and Gram-positive bacteria, including multidrug-resistant pathogens. Examination of their specific mode of action and molecular target revealed that the zeamines affect the integrity of cell membranes. The zeamines provoke rapid release of carboxyfluorescein from unilamellar vesicles with different phospholipid compositions, demonstrating that they can interact directly with the lipid bilayer in the absence of a specific target. DNA, RNA, fatty acid, and protein biosynthetic processes ceased simultaneously at subinhibitory levels of the antibiotics, presumably as a direct consequence of membrane disruption. The zeamine antibiotics also facilitated the uptake of small molecules, such as 1-N-phenylnaphtylamine, indicating their ability to permeabilize the Gram-negative outer membrane (OM). The valine-linked polyketide moiety present in zeamine and zeamine I was found to increase the efficiency of this process. In contrast, translocation of the large hydrophilic fluorescent peptidoglycan binding protein PBDKZ-GFP was not facilitated, suggesting that the zeamines cause subtle perturbation of theOMrather than drastic alterations or defined pore formation. At zeamine concentrations above those required for growth inhibition, membrane lysis occurred as indicated by time-lapse microscopy. Together, these findings show that the bactericidal activity of the zeamines derives from generalized membrane permeabilization, which likely is initiated by electrostatic interactions with negatively charged membrane components

    A New Family of Lysozyme Inhibitors Contributing to Lysozyme Tolerance in Gram-Negative Bacteria

    Get PDF
    Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative bacteria. First, a lysozyme inhibitor was isolated by affinity chromatography from a periplasmic extract of Salmonella Enteritidis, identified by mass spectrometry and correspondingly designated as PliC (periplasmic lysozyme inhibitor of c-type lysozyme). A pliC knock-out mutant no longer produced lysozyme inhibitory activity and showed increased lysozyme sensitivity in the presence of the outer membrane permeabilizing protein lactoferrin. PliC lacks similarity with the previously described Escherichia coli lysozyme inhibitor Ivy, but is related to a group of proteins with a common conserved COG3895 domain, some of them predicted to be lipoproteins. No function has yet been assigned to these proteins, although they are widely spread among the Proteobacteria. We demonstrate that at least two representatives of this group, MliC (membrane bound lysozyme inhibitor of c-type lysozyme) of E. coli and Pseudomonas aeruginosa, also possess lysozyme inhibitory activity and confer increased lysozyme tolerance upon expression in E. coli. Interestingly, mliC of Salmonella Typhi was picked up earlier in a screen for genes induced during residence in macrophages, and knockout of mliC was shown to reduce macrophage survival of S. Typhi. Based on these observations, we suggest that the COG3895 domain is a common feature of a novel and widespread family of bacterial lysozyme inhibitors in gram-negative bacteria that may function as colonization or virulence factors in bacteria interacting with an animal host
    corecore