372 research outputs found

    Locally finite groups in which every non-cyclic subgroup is self-centralizing

    Get PDF
    Locally finite groups having the property that every non-cyclic subgroup contains its centralizer are completely classified.Comment: 12 page

    Informed Leadership through Assessment Workshops

    Get PDF
    The first half of this workshop is focused on the responsibility of academic leaders to develop a culture of assessment. Participants will leave this workshop with strategies to guide faculty in defining learning outcomes, aligning course and program learning expectations, designing meaningful assessments, and using assessment data to inform program decisions. The second half of this workshop will demonstrate advanced assessment processes that empower faculty through automated data collection, interactive visualization, and enriched analysis. Program leaders will learn how to use advanced assessment processes to exceed institutional and accreditation expectations, and reimagine strategic goals

    PHI-base: a new database for pathogen host interactions

    Get PDF
    To utilize effectively the growing number of verified genes that mediate an organism's ability to cause disease and/or to trigger host responses, we have developed PHI-base. This is a web-accessible database that currently catalogs 405 experimentally verified pathogenicity, virulence and effector genes from 54 fungal and Oomycete pathogens, of which 176 are from animal pathogens, 227 from plant pathogens and 3 from pathogens with a fungal host. PHI-base is the first on-line resource devoted to the identification and presentation of information on fungal and Oomycete pathogenicity genes and their host interactions. As such, PHI-base is a valuable resource for the discovery of candidate targets in medically and agronomically important fungal and Oomycete pathogens for intervention with synthetic chemistries and natural products. Each entry in PHI-base is curated by domain experts and supported by strong experimental evidence (gene/transcript disruption experiments) as well as literature references in which the experiments are described. Each gene in PHI-base is presented with its nucleotide and deduced amino acid sequence as well as a detailed description of the predicted protein's function during the host infection process. To facilitate data interoperability, we have annotated genes using controlled vocabularies (Gene Ontology terms, Enzyme Commission Numbers and so on), and provide links to other external data sources (e.g. NCBI taxonomy and EMBL). We welcome new data for inclusion in PHI-base, which is freely accessed at

    The First Two Years of Electromagnetic Follow-Up with Advanced LIGO and Virgo

    Get PDF
    We anticipate the first direct detections of gravitational waves (GWs) with Advanced LIGO and Virgo later this decade. Though this groundbreaking technical achievement will be its own reward, a still greater prize could be observations of compact binary mergers in both gravitational and electromagnetic channels simultaneously. During Advanced LIGO and Virgo's first two years of operation, 2015 through 2016, we expect the global GW detector array to improve in sensitivity and livetime and expand from two to three detectors. We model the detection rate and the sky localization accuracy for binary neutron star (BNS) mergers across this transition. We have analyzed a large, astrophysically motivated source population using real-time detection and sky localization codes and higher-latency parameter estimation codes that have been expressly built for operation in the Advanced LIGO/Virgo era. We show that for most BNS events the rapid sky localization, available about a minute after a detection, is as accurate as the full parameter estimation. We demonstrate that Advanced Virgo will play an important role in sky localization, even though it is anticipated to come online with only one-third as much sensitivity as the Advanced LIGO detectors. We find that the median 90% confidence region shrinks from ~500 square degrees in 2015 to ~200 square degrees in 2016. A few distinct scenarios for the first LIGO/Virgo detections emerge from our simulations.Comment: 17 pages, 11 figures, 5 tables. For accompanying data, see http://www.ligo.org/scientists/first2year

    What does augmented reality mean as a medium of expression for computational artists?

    Get PDF
    As augmented reality (AR) quickly evolves with new technological practice, there is a growing need to question and reevaluate its potential as a medium for creative expression. The authors discuss AR within computational art, framed within AR as a medium, AR aesthetics and applications. The Forum for Augmented Reality Immersive Instruments (ARImI), a two-day event on AR, highlights both possibilities and fundamental concerns for continuing artworks in this field, including visual bias, sensory modalities, interactivity and performativity. The authors offer a new AR definition as real-time computationally mediated perception

    Parameter estimation on gravitational waves from neutron-star binaries with spinning components

    Get PDF
    Inspiraling binary neutron stars are expected to be one of the most significant sources of gravitational-wave signals for the new generation of advanced ground-based detectors. We investigate how well we could hope to measure properties of these binaries using the Advanced LIGO detectors, which began operation in September 2015. We study an astrophysically motivated population of sources (binary components with masses 1.2 M⊙1.2~\mathrm{M}_\odot--1.6 M⊙1.6~\mathrm{M}_\odot and spins of less than 0.050.05) using the full LIGO analysis pipeline. While this simulated population covers the observed range of potential binary neutron-star sources, we do not exclude the possibility of sources with parameters outside these ranges; given the existing uncertainty in distributions of mass and spin, it is critical that analyses account for the full range of possible mass and spin configurations. We find that conservative prior assumptions on neutron-star mass and spin lead to average fractional uncertainties in component masses of ∼16%\sim 16\%, with little constraint on spins (the median 90%90\% upper limit on the spin of the more massive component is ∼0.7\sim 0.7). Stronger prior constraints on neutron-star spins can further constrain mass estimates, but only marginally. However, we find that the sky position and luminosity distance for these sources are not influenced by the inclusion of spin; therefore, if LIGO detects a low-spin population of BNS sources, less computationally expensive results calculated neglecting spin will be sufficient for guiding electromagnetic follow-up.Comment: 10 pages, 9 figure

    Formability Characterization of a New Generation High Strength Steels

    Get PDF
    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength

    Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion

    Get PDF
    In this work, the kinetic parameters governing the thermal and oxidative degradation of flexible polyurethane foam are determined using thermogravimetric data and a genetic algorithm. These kinetic parameters are needed in the theoretical modeling of the foam’s smoldering behavior. Experimental thermogravimetric mass-loss data are used to explore the kinetics of polyurethane foam and to propose a mechanism consisting of five reactions. A lumped model of solid mass-loss based on Arrhenius-type reaction rates and the five-step mechanism is developed to predict the polyurethane thermal degradation. The predictions are compared to the thermogravimetric measurements, and using a genetic algorithm, the method finds the kinetic and stoichiometric parameters that provide the best agreement between the lumped model and the experiments. To date, no study has attempted to describe both forward and opposed smolder-propagation with the same kinetic mechanism. Thus, in order to verify that the polyurethane kinetics determined from thermogravimetric experiments can be used to describe the reactions involved in polyurethane smoldering combustion, the five-step mechanism and its kinetic parameters are incorporated into a simple species model of smoldering combustion. It is shown that the species model agrees with experimental observations and that it captures phenomenologically the spatial distribution of the different species and the reactions in the vicinity of the front, for both forward and opposed propagation. The results indicate that the kinetic scheme proposed here is the first one to describe smoldering combustion of polyurethane in both propagation modes

    Confirmation of the recurrent ACVR1 617G>A mutation in South Africans with fibrodysplasia ossificans progressiva

    Get PDF
    Objective. Fibrodysplasia ossificans progressiva (FOP) is a rare genetic condition in which progressive ossification of fibrous tissue, tendons and ligaments leads to severe physical handicap. Most affected individuals who have been studied have a recurrent 617G>A mutation in the ACVR1/ALK2 gene that codes for activin A type 1 receptor/activin-like kinase 2. The majority of publications on the genetics of FOP have concerned whites or Asians, and no genetic information is available concerning sub-Saharan blacks. The aim of the project was to determine whether or not this mutation is present in affected persons in South Africa. Method. Molecular mutational analysis was undertaken on genomic DNA from peripheral blood leukocytes from 6 affected South African of different population groups (4 Xhosa, 1 coloured, 1 white). Results. The 6 persons with FOP were all heterozygous for the ACVR1/ALK2 617G>A mutation. This mutation was absent in 6 controls. Conclusion. Confirmation of the presence of this recurrent mutation facilitates diagnostic accuracy in affected persons in South Africa, and allows researchers to narrow the search for molecular targets for rational intervention to the ACVR1/ALK2 domain

    The LEAD (Lung, Heart, Social, Body) Study: Objectives, Methodology, and External Validity of the Population-Based Cohort Study

    Get PDF
    BACKGROUND: The Lung, hEart, sociAl, boDy (LEAD) Study (ClinicalTrials.gov; NCT01727518; http://clinicaltrials.gov) is a longitudinal, observational, population-based Austrian cohort that aims to investigate the relationship between genetic, environmental, social, developmental and ageing factors influencing respiratory health and comorbidities through life. The general working hypothesis of LEAD is the interaction of these genetic, environmental and socioeconomic factors influences lung development and ageing, the risk of occurrence of several non-communicable diseases (respiratory, cardiovascular, metabolic and neurologic), as well as their phenotypic (ie, clinical) presentation. METHODS: LEAD invited from 2011-2016 a random sample (stratified by age, gender, residential area) of Vienna inhabitants (urban cohort) and all the inhabitants of six villages from Lower Austria (rural cohort). Participants will be followed-up every four years. A number of investigations and measurements were obtained in each of the four domains of the study (Lung, hEart, sociAl, boDy) including data to screen for lung, cardiovascular and metabolic diseases, osteoporosis, and cognitive function. Blood and urine samples are stored in a biobank for future investigations. RESULTS: A total of 11.423 males (47.6%) and females (52.4%), aged 6-80 years have been included in the cohort. Compared to governmental statistics, the external validity of LEAD with respect to age, gender, citizenship, and smoking status was high. CONCLUSIONS: In conclusion, the LEAD cohort has been established following high quality standards; it is representative of the Austrian population and offers a platform to understand lung development and ageing as a key mechanism of human health both in early and late adulthood
    • …
    corecore