599 research outputs found

    Ferguson v. City of Charleston and Child Welfare

    Get PDF

    Higher signal harmonics, LISA's angular resolution, and dark energy

    Get PDF
    It is generally believed that the angular resolution of the Laser Interferometer Space Antenna (LISA) for binary supermassive black holes (SMBH) will not be good enough to identify the host galaxy or galaxy cluster. This conclusion, based on using only the dominant harmonic of the binary SMBH signal, changes substantially when higher signal harmonics are included in assessing the parameter estimation problem. We show that in a subset of the source parameter space the angular resolution increases by more than a factor of 10, thereby making it possible for LISA to identify the host galaxy/galaxy cluster. Thus, LISA's observation of certain binary SMBH coalescence events could constrain the dark energy equation of state to within a few percent, comparable to the level expected from other dark energy missions.Comment: 15 pages, no figures. Final version to appear in Phys. Rev.

    Funcionalismo, semiótica e aquisição da linguagem

    Get PDF
    Inexistent

    LISA as a dark energy probe

    Full text link
    Recently it was shown that the inclusion of higher signal harmonics in the inspiral signals of binary supermassive black holes (SMBH) leads to dramatic improvements in parameter estimation with the Laser Interferometer Space Antenna (LISA). In particular, the angular resolution becomes good enough to identify the host galaxy or galaxy cluster, in which case the redshift can be determined by electromagnetic means. The gravitational wave signal also provides the luminosity distance with high accuracy, and the relationship between this and the redshift depends sensitively on the cosmological parameters, such as the equation-of-state parameter w=pDE/ρDEw=p_{\rm DE}/\rho_{\rm DE} of dark energy. With a single binary SMBH event at z<1z < 1 having appropriate masses and orientation, one would be able to constrain ww to within a few percent. We show that, if the measured sky location is folded into the error analysis, the uncertainty on ww goes down by an additional factor of 2-3, leaving weak lensing as the only limiting factor in using LISA as a dark energy probe.Comment: 11pages, 1 Table, minor changes in text, accepted for publication in Classical and Quantum Gravity (special issue for proceedings of 7th LISA symposium

    The molecular diversity of Luminal A breast tumors

    Get PDF
    Breast cancer is a collection of diseases with distinct molecular traits, prognosis, and therapeutic options. Luminal A breast cancer is the most heterogeneous, both molecularly and clinically. Using genomic data from over 1,000 Luminal Atumors from multiple studies, we analyzed the copy number and mutational landscape of this tumor subtype. This integrated analysis revealed four major subtypes defined by distinct copy-number and mutation profiles. We identified an atypical Luminal A subtype characterized by high genomic instability, TP53 mutations, and increased Aurora kinase signaling; these genomic alterations lead to a worse clinical prognosis. Aberrations of chromosomes 1, 8, and 16, together with PIK3CA, GATA3, AKT1, and MAP3K1 mutations drive the other subtypes. Finally, an unbiased pathway analysis revealed multiple rare, but mutually exclusive, alterations linked to loss of activity of co-repressor complexes N-Cor and SMRT. These rare alterations were the most prevalent in Luminal A tumors and may predict resistance to endocrine therapy. Our work provides for a further molecular stratification of Luminal A breast tumors, with potential direct clinical implications.Electronic supplementary materialThe online version of this article (doi:10.1007/s10549-013-2699-3) contains supplementary material, which is available to authorized users

    Massive Black Hole Binary Inspirals: Results from the LISA Parameter Estimation Taskforce

    Full text link
    The LISA Parameter Estimation (LISAPE) Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models, and results related to parameter estimation. The Taskforce's goal is to be able to quickly calculate the impact of any mission design changes on LISA's science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforce's work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large, and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISA's parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show that once these differences are removed, the four codes give results in extremely close agreement with each other. Using a code that includes both spin precession and higher harmonics in the gravitational-wave signal, we carry out Monte Carlo simulations and determine the number of events that can be detected and accurately localized in our four population models.Comment: 14 pages, 2 figures, 5 tables, minor changes to match version to be published in the proceedings of the 7th LISA Symposium. For more information see the Taskforce's wiki at http://www.tapir.caltech.edu/dokuwiki/lisape:hom

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software
    corecore