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DCD – Donation after circulatory death 1 

FWIT – Functional warm ischaemia time 2 

IQR – Interquartile range 3 
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NPOS – National pancreas offering scheme 5 

NRP – Normothermic regional perfusion 6 

RCS – Restricted cubic spline 7 

SPK – Simultaneous pancreas-kidney transplantation 8 

TTD – Time to death 9 

UKTR – United Kingdom Transplant Registry 10 
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Abstract 14 

Time to arrest in donors after circulatory death is unpredictable and can vary. This leads to 15 

variable periods of warm ischaemic damage prior to pancreas transplantation. There is little 16 

evidence supporting procurement team stand-down times based on donor time to death 17 

(TTD).  We examined what impact TTD had on pancreas graft outcomes following DCD 18 

SPK transplantation. Data were extracted from the UK transplant registry from 2014 to 2022. 19 

Predictors of graft loss were evaluated by a Cox proportional hazards model. Adjusted 20 

restricted cubic spline (RCS) models were generated to further delineate the relationship 21 

between TTD and outcome. Three-hundred-and-seventy-five DCD simultaneous kidney-22 

pancreas transplant recipients were included. Increasing TTD was not associated with graft 23 

survival (aHR 0.98, 95% CI 0.68-1.41, P=0.901). Increasing asystolic time worsened graft 24 

survival (aHR 2.51, 95% CI 1.16-5.43, P=0.020). RCS modelling revealed a non-linear 25 

relationship was demonstrated between asystolic time and graft survival, and no relationship 26 

between TTD and graft survival. We found no evidence that TTD impacts on pancreas graft 27 

survival after DCD SPK transplantation, however increasing asystolic time was a significant 28 

predictor of graft loss. Procurement teams should attempt to minimise asystolic time to 29 

optimize pancreas graft survival rather than focus on the duration of TTD. 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 
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Introduction 39 

Simultaneous pancreas-kidney (SPK) transplantation is the optimum therapy for selected 40 

patients with end-stage renal disease and insulin-dependent diabetes mellitus1-5. Despite this, 41 

a mismatch between the number of organs available and number of patients on the waiting 42 

list limits access to SPK transplantation. So far during 2023 the NHS Blood and Transplant 43 

(NHSBT) pancreas transplant waiting list is the highest it has been during the last 10 years, 44 

highlighting the shortage of organs and the need to optimise utilisation. In the UK pancreas 45 

grafts from donors after circulatory death6 have been used to good effect in order to improve 46 

access to beta cell replacement therapy6,7. 47 

 48 

Some centres, however, remain reluctant to use pancreas grafts from donors after circulatory 49 

death (DCD)6, because of historical reports suggesting that these grafts have higher failure 50 

rates than pancreas grafts from donors after brainstem death (DBD)8-10. Nevertheless 51 

improving the utilisation of the DCD pancreas donor pool is likely to significantly shorten 52 

waiting times and reduce the SPK waiting list especially when used in conjunction with other 53 

advances in organ preservation, such as normothermic regional perfusion (NRP)11-13. 54 

Previous retrospective studies have demonstrated equivalent short and long-term outcomes 55 

after DCD SPK transplantation when comparing DCD grafts with DBD grafts4,7,14-16. Indeed 56 

some studies even suggest the outcomes are even better for DCD SPK14.  57 

 58 

Following withdrawal of life-sustaining treatment, time to death (TTD) can vary with 59 

fluctuations in haemodynamic parameters leading to variable periods of warm ischaemia to 60 

the abdominal viscera. Donors may decline rapidly, gradually or demonstrate a period of 61 

relative stability followed by rapid decline after treatment withdrawal17. Time pressures may 62 

constrain organ procurement teams from waiting indefinitely for donor asystole leading to the 63 
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 5 

team standing down unecessarily. Hypotension, hypoxia and vascular shunting towards the 64 

brain and heart may also lead to organ injury that is not fully reflected in the donor systolic 65 

blood pressure or oxygen saturations18. It is accepted that reducing stand down times for 66 

procurement teams leads to less ischaemic injury in grafts, however this will have significant 67 

implications on the number of grafts available, waiting list management along with a poorer 68 

utilisation rate. With this in mind there is no national or international consensus on what is 69 

accepted practise on stand down times for SPK DCD transplants. 70 

 71 

We aimed to assess what impact donor TTD had on pancreas graft outcome in DCD SPK 72 

transplantation. We hypothesise that a prolonged time to death is associated with an increased 73 

risk of pancreas graft loss. 74 

 75 

Methods 76 

Setting 77 

We performed a retrospective review of adult (≥18-years) DCD SPK graft recipients in the 78 

UK from 1st January 2014 to 31st December 2022. Data were extracted from the UK 79 

Transplant Registry (UKTR) maintained by NHS Blood and Transplant following approval 80 

from the UK Pancreas Advisory Group. The common closure date of the study was 1st April 81 

2023. Patients are placed on a combined waiting list for SPK, solitary pancreas 82 

transplantation (pancreas after kidney transplantation and pancreas transplantation alone) and 83 

islet-cell transplantation islet cell transplantation alone, simultaneous islet cell and kidney 84 

transplantation or islet cell after kidney transplantation) with offers made on a named-patient 85 

basis determined by a National Pancreas Offering Scheme (NPOS)19. All donors were within 86 

Maastricht criteria III (controlled DCD)20. Contraindications to pancreas donation in the UK 87 

have been previously described in the most current British Transplantation Society 88 
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guidelines21. Potential recipients for SPK transplantation are listed based on nationally agreed 89 

criteria as previously deescribed22, but must have an estimated glomerular filtration rate 90 

≤20mL/min and insulin-treated diabetes mellitus. SPK transplantation is performed by eight 91 

transplant units in the UK; all data was anonymised, including transplant centre. 92 

 93 

Organ procurement and transplantation 94 

In the UK a 5-minute ‘no-touch’ time is observed for confirmation of donor death as 95 

previously described23. Medical interventions to facilitate organ donation (e.g. systemic 96 

heparinisation and vascular cannulation) cannot be performed prior to confirmation of death. 97 

Organ procurement is commenced once death is confirmed, and the no-touch period has been 98 

observed. In the UK, procurement teams will wait up to 3 hours for circulatory arrest 99 

following treatment withdrawal for donor asystole to occur24, however implanting centres 100 

generally decline pancreas grafts after 1 hour. Pancreas and kidney grafts are placed into 101 

static cold storage boxes for transportation to implanting centres. Normothermic regional 102 

perfusion (NRP) was used variably by the organ procurement teams. Transplantation and 103 

post-operative immunosuppression protocols were determined by the implanting centre. 104 

 105 

Definitions and outcomes 106 

TTD was defined as the time from withdrawal of life-sustaining treatment to donor asystole 107 

(absence of a palpable arterial pulse and/or cessation of cardiac electrical activity) (Figure 1). 108 

Asystolic time was from asystole until cold aortic perfusion. Functional warm ischaemia time 109 

(FWIT) was the time from donor systolic blood pressure <50mmHg and/or SaO2 <70% to 110 

cold aortic perfusion. Pancreatectomy time was from cold aortic perfusion to placement of 111 

the pancreas graft in ice on the back table. Our primary outcome was time to pancreas graft 112 

failure, which was defined as a return to sustained exogenous insulin treatment or graft 113 
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 7 

pancreatectomy, whichever occurred first. This was censored for death with a functioning 114 

graft or those with a functioning graft at the common closure data of the study. The Igls 115 

criteria25 was not used, as NHSBT only routinely began collecting this data from 2019 116 

onwards.  Death-censored kidney graft failure was defined as a return to dialysis or re-117 

transplantation, whichever occurred first. Patient survival was calculated from the time of 118 

transplantation to death. 119 

 120 

Statistical analyses 121 

Continuous variables are presented as means/medians with standard deviations/interquartile 122 

ranges (IQR). Missing explanatory data were imputed with multiple imputation using the 123 

fully conditional specification technique, applied to generate five imputed datasets. 124 

Supplementary table 1 summarises missing data; those variables with missing data were 125 

imputed. All variables listed in Supplementary table 1, plus graft loss at 1 year, were used as 126 

predictors in the imputation model.  127 

 128 

Continuous variables were compared using the t-test. Categorical variables were compared 129 

using the Chi-squared test or Fishers’ exact test, where appropriate. Cox regression was used 130 

to build multivariable graft survival models. Donor, graft, recipient, and operative factors 131 

were initially screened, and included in multivariable models if they have previously been 132 

described as predictors of graft outcome, or if they were retained as significant predictors in 133 

our cohort (using backward likelihood ratio stepwise selection). For Cox regression models, 134 

results from the five imputed datasets were pooled according to Rubin’s rules. To assess the 135 

assumption of proportional hazards for cox regression models scaled Schoenfeld residual 136 

versus time plots were assessed visually. In addition, Schoenfeld tests were performed, 137 

assessing whether scaled Schoenfeld residuals changed over time. There was no evidence of 138 
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violation of the proportional hazards assumption in any of our Cox regression models, either 139 

on visual assessment or Schoenfeld tests (at P<0.05 level). Results of these models are 140 

presented as adjusted hazard ratios with 95% confidence intervals. As there were only 9 141 

TTD >60 minutes, a sensitivity analysis was performed with these ‘extreme’ values removed. 142 

 143 

Ischaemic times were kept as continuous variables, and those which were right-skewed (all 144 

except cold ischaemic time) were log-transformed (base 2) prior to fitting into our main Cox 145 

regression models. TTD, time to FWIT and FWIT all overlap (figure 1); these factors were 146 

fitted into separate regression models to avoid multicollinearity. Models were also fitted for 147 

recipient survival. As an additional analysis, we repeated our main Cox regression models for 148 

graft survival using the restricted cubic spline approach (three knots located at the 10th, 50th 149 

and 90th percentile) to assess the impact of TTD and asystolic time on outcome without 150 

assuming a linear relationship. The Kaplan-Meier method was used to estimate graft and 151 

patient survival, with the log-rank test used for comparisons between groups. Non-imputed 152 

data was used for this exploratory analysis. For all statistical tests, significance was set at 153 

P<0.05. All analyses were performed using SPSS version 26 (IBM corp, Armonk, New 154 

York, USA), and figures were generated using R (R Foundation for Statistical Computing, 155 

Vienna, Austria). 156 

 157 

Results 158 

Donor, recipient, and organ procurement characteristics 159 

From 1st January 2014 to 31st December 2022, 375 adult patients underwent DCD SPK 160 

transplantation (first pancreas graft in 371 patients, 98.9%) ,189 patients transplanted from 161 

2014 to 2017 and 186 from 2018 to 2022. TTD was not available in 20.5% patients. A 162 

summary of missing data given in Supplementary table 1, and the patterns of missing data are 163 
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 9 

shown in Supplementary figure 1. Donor and recipient characteristics are described in table 1. 164 

Hypoxic brain injury was the commonest cause of death (46.9%). Forty-three SPK 165 

transplants were from grafts procured from donors who underwent NRP. Mean waiting time 166 

to transplantation was 371.8 days289 days, with 213 patients on dialysis immediately prior 167 

to SPK transplantation (56.8%). Donor procurement times are presented in table 2. Median 168 

TTD was 13-minutes (IQR 10-16 minutes), median FWIT was 27-minutes (IQR 23-31 169 

minutes), and median asystolic time was 13-minutes (IQR 11-15 minutes). TTD was greater 170 

than 30 minutes in 20 donors (5.3%) and greater than 60 minutes in 9 donors (2.4%), with a 171 

maximum value of 407 minutes in one donor. Overall cold ischaemic time was >12 hours in 172 

75 grafts (20%). Demographic variables comparing TTD ≤60 minutes with TTD >60 minutes 173 

is presented in supplementary table 2. 174 

 175 

Recipient outcomes 176 

Patient survival at 1-, 3- and 5-years in the entire cohort was 98.0%, 94.0% and 90.6%, 177 

respectively. Pancreas graft survival at 1-, 3- and 5-years in the entire cohort was 90.6%, 178 

86.7% and 80.7%, respectively. Pancreas graft failure occurred in 42 patients (11.2%), with 179 

the cause of graft failure described in table 3. Kidney graft failure occurred in 23 recipients, 180 

with graft survival at 1-, 3- and 5-years was 96.3%, 93.3% and 93.3%.  181 

 182 

Impact of donor time to death on recipient outcome 183 

Multivariable analysis of potential predictors of graft failure (including TTD) is presented in 184 

table 4. Donor BMI, recipient age, year of transplant, diabetes cause and asystolic time were 185 

retained as significant predictors, with NRP, donor age, donor cause of death added to the 186 

model based on previous research and clinical expertise. Donor TTD was not significantly 187 

associated with pancreas graft loss (aHR 0.98, 95% CI 0.68-1.41, P=0.901), however 188 
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 10 

asystolic time was significantly associated with pancreas graft loss (aHR 2.51, 95% CI 1.16-189 

5.43, P=0.020). These aHR relate to changes on the Log2 scale, so this represents a 2.51 fold 190 

increase in hazard each time asystolic time doubles. A Kaplan-Meier plot comparing 191 

pancreas graft survival and patient survival across TTD categories is presented in 192 

supplementary figure 2. Of note, the recipient of the pancreas graft with a donor TTD of 407 193 

minutes was alive with a functioning graft at 4 years post-transplantation.  194 

 195 

Other significant predictors were donor BMI, recipient age, year of transplant and type 2 196 

diabetes in the recipient. Pancreatectomy time was not a significant predictor in this model. 197 

Sensitivity analysis excluding recipients of grafts from donors with TTD >60 minutes was 198 

performed, with no difference in the results noted.  199 

 200 

The impact of time to death and asystolic time may be different in donors undergoing NRP. 201 

This hypothesis was tested by the addition of interaction terms to the model shown in table 4. 202 

There was no evidence that the impact of time to death or asystolic time on pancreas graft 203 

survival was different in donors receiving NRP (interaction P=0.167 and P=0.553 204 

respectively). In addition, sensitivity analysis was performed removing recipients of SPK 205 

grafts from donors who had undergone NRP, with no difference in significant predictors of 206 

outcome in non-NRP donors.  207 

 208 

TTD was not a significant predictor of recipient mortality (analysis not shown). TTD and 209 

asystolic time were not identified as a predictor of kidney graft survival in separate modelling 210 

(analysis not shown). The majority of DCD SPK transplants from grafts with a donor TTD 211 

exceeding 60 minutes were performed by a single centre (supplementary figure 3). A 212 
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sensitivity analysis was performed including this implanting centre as a confounder in the 213 

model with no impact on the results (analysis not shown). 214 

 215 

Impact of functional warm ischaemia time on recipient outcome 216 

Multivariable analysis of potential predictors of pancreas graft failure (including FWIT, but 217 

not TTD) are presented in table 5. Donor FWIT was identified as a significant predictor of 218 

pancreas graft loss (aHR 2.21, 95% CI 1.06-4.61, P=0.035). Donor BMI, year of transplant, 219 

recipient age and type 2 diabetes in the recipient were also found to be significant predictors 220 

in this model. Pancreatectomy time was not a significant predictor in this model.  221 

 222 

Adding an interaction term to the model in Table 5 found no evidence that the impact of 223 

fWIT on pancreas graft survival was modified by NRP (interaction P=0.607). Sensitivity 224 

analysis excluding NRP grafts demonstrated no change to the identified predictors of 225 

pancreas graft loss in non-NRP donors (analysis not shown). In separate modelling, FWIT 226 

was not identified as a predictor of kidney graft outcome. 227 

 228 

Restricted cubic spline modelling and asystolic time 229 

Restricted cubic spline modelling of graft loss as a function of TTD did not reveal a non-230 

linear relationship (figure 2). However, a non-linear relationship was observed when 231 

modelling graft loss as a function of asystolic time (figure 3). In this model, the relationship 232 

was sigmoidal. Pancreas graft survival was significantly higher in recipients of grafts with an 233 

asystolic time <13 minutes compared to recipients of a grafts with an asystolic time ≥13 234 

minutes (P=0.024, figure 4). Pancreas graft survival at 1-, 3- and 5-years was 92.8%, 89.2% 235 

and 87.3%, respectively, in the asystolic time ≥13 minutes group and 86.8%, 82.2% and 236 

71.0%, respectively, in the asystolic time >13 minutes group. There was no significant 237 
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difference (supplementary figure 4, P=0.700) in kidney graft survival. One, 3- and 5-year 238 

kidney graft survival was 96.8%, 94.5% and 92.6%, respectively, in the asystolic time <13 239 

minutes group and 96.0%, 92.1% and 92.1%, respectively in the asystolic time ≥13 minutes 240 

group. 241 

 242 

Discussion 243 

In this study there was no relationship between TTD and death-censored pancreas graft 244 

survival after DCD SPK transplantation. This suggests that from the time of treatment 245 

withdrawal to cold aortic perfusion, the pancreas graft is relatively protected from ischaemic 246 

injury that may impact on post-transplant outcome during the agonal phase. FWIT and 247 

asystolic time were separately identified as significant predictors of graft outcome, with a 248 

sigmoidal relationship identified between asystolic time and pancreas graft outcome. A 249 

further exploratory survival analysis around the median asystolic time in the cohort 250 

confirmed this finding for pancreas grafts, but not kidney grafts. Therefore pancreas graft 251 

injury was found to occur once donor systolic blood pressure and/or SaO2 drop below 252 

50mmHg and 70%, respectively, with relative resistance of the kidney graft. 253 

 254 

Ideally, keeping asystolic time to a minimum would benefit DCD SPK transplant recipients. 255 

However efforts from procurement teams to reduce asystolic time is not straightforward. In 256 

contrast to the US, no pre-procurement interventions (such as systemic heparinization, 257 

insertion of NRP cannulae or pre-arrest prepping/draping of the donor) are implemented to 258 

potentially optimise 11,13,26,27 and speed up organ donation. We accept that location of 259 

treatment withdrawal in relation to the distance to the operating theatre is variable, with some 260 

donor hospitals withdrawing in the intensive care unit, observing the 5-minute ‘no-touch’ 261 

period and then transferring to the operating theatre, potentially adding to the asystolic time 262 
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and impacting outcome. Our data suggests that treatment withdrawal within the anaesthetic 263 

room in the operating theatre complex may reduce transfer time and therefore asystolic time. 264 

This has been recognised as a ‘donation action likely to be in a patient’s best interest’ in the 265 

Donation Actions Framework28, which seeks to address ethical questions in organ donation in 266 

order to remove barriers to decision-making during organ donation. Given the impact of 267 

asystolic time on pancreas graft outcome, the legality of pre-arrest interventions will require 268 

further consideration in the UK.  269 

 270 

In 2021-22, 46% of DCD pancreas graft offers were declined by implanting centres29. In a 271 

retrospective study of pancreas graft utilization in the UK, out of 1879 pancreas grafts 272 

declined for retrieval, 317 grafts (16.9%) were due to ‘prolonged donor asystole’ from 2005-273 

1530. However decisions regarding utilization of a pancreas graft are multifactorial, and a 274 

prolonged asystolic time, TTD and/or FWIT in addition to the recorded reason for decline 275 

(e.g. donor past medical history) may have contributed to the decision to decline a pancreas 276 

graft, confounding any analysis into the reasons for decline in donors where the pancreas 277 

graft was not procured. Therefore the precise number of donor pancreas grafts that do not 278 

proceed to procurement due to prolonged TTD, fWIT or asystoltic time contributing to the 279 

decision to decline a graft in the UK is unknown. This demonstrates a need to optimise 280 

procurement (potentially through reducing asystolic time during donation) and utilisation 281 

(through more informed decision-making) given that diabetic uraemic patients still die whilst 282 

waiting. UK practice is for procurement teams to wait at least 3 hours for the onset of FWIT 283 

(and then 30 minutes from the onset of FWIT for asystole to occur) prior to standing down, 284 

TTD exceeded 30 minutes in 20 donors in our cohort, with a maximum value of 407 minutes 285 

in one donor.  286 

 287 
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We are unable to  comment on whether extending the stand down time for procurement teams 288 

beyond 3-hours could be achieved without impairing post-transplant outcome. Whilst this 289 

may improve utilisation the disadvantages would include resource utilisation and cost 290 

(surgical team on standby, operating theatre in use, etc). In the US, there is no formal stand 291 

down time for procurement teams following withdrawal of treatment. A single-centre 292 

retrospective study examined the impact of extending the stand down time from 1 hour post-293 

treatment withdrawal to 2 hours, and demonstrated that this resulted in up to 10% more 294 

kidney grafts being procured and transplanted with no observed adverse effect on outcome31. 295 

FWIT has previously been associated with an increased risk of graft loss and post-transplant 296 

complications after liver transplantation18,32-34. There is limited data exploring the 297 

relationship between FWIT and pancreas graft outcome. Although we identified FWIT as a 298 

predictor of graft outcome, the current definition may not entirely reflect the total ischaemic 299 

injury experienced by the abdominal viscera following withdrawal of treatment. A 300 

retrospective study of DCD liver transplantation in the United States explored the relationship 301 

between the length of donor hypoxia (defined as SaO2 ≤80%) and graft survival. The authors 302 

identified that increasing hypoxic time led to worse outcome up to 16 minutes with no 303 

increase in effect thereafter, suggesting that an over-reliance on FWIT may be detrimental to 304 

graft utilisation.  Based on tissue perfusion studies in sepsis, there has been some suggestion 305 

that FWIT should be redefined as  the time SaO2 falls below 80% and/or systolic blood 306 

pressure falls below 60mmHg35-37. With NRP gaining considerable traction as a method to 307 

reduce ischaemic injury during DCD organ procurement12,26,38, further re-evaluation of 308 

definitions will be necessary.  Although we did not identify NRP as a significant predictor of 309 

graft outcome, this may have been due to the small number of NRP-procured pancreas 310 

grafts12 and the lack of any previously reported large multi-centre studies  A pre-clinical 311 
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porcine model of pancreas transplantation following NRP demonstrated that extended 312 

preservation could be achieved with minimal graft oedema and immediate graft function39.  313 

 314 

The interaction between warm and cold ischaemia has not been explored in this study. Cold 315 

ischaemic time was not found to be a significant predictor of graft outcome which is 316 

surprising14,40. An early preclinical study of pancreas transplantation in rats evaluated islet 317 

function after 2-hours of warm ischaemia and after 24-hours of cold ischaemia separately41. 318 

The authors found that a combination of 60-minutes warm ischaemia followed by 12-hours 319 

cold ischaemia was well tolerated, however any expansion of either ischaemic time beyond 320 

these thresholds led to non-functioning grafts. In our study, 20% of pancreas grafts had a cold 321 

ischaemic time exceeding 12-hours, however the median FWIT for these grafts was 22.8-322 

minutes (range 9-minutes to 58-minutes), which may have mitigated against some of the 323 

deleterious effect of cold ischaemic time.  324 

 325 

Novel preservation technologies are likely to have a future impact on utilisation of pancreas 326 

grafts, through enabling real-time assessment of the graft and potentially ameliorating 327 

ischaemic injury associated with preservation11. This has been achieved successfully in 328 

liver6,42,43 and kidney transplantation44,45 with ex situ machine perfusion, and with NRP12. 329 

Pancreas grafts have not demonstrated as much enthusiasm with initial trials of ex situ 330 

perfusion observing graft damage following reperfusion46. More recently normothermic 331 

machine perfusion of pancreas grafts has been demonstrated, with perfusate amylase 332 

correlated with fatty infiltration and exocrine function of the graft 47,48. Normothermic 333 

machine perfusion may also be used as a platform for delivering therapeutics to grafts to 334 

recondition them prior to implantation49-51. Recently, a pre-clinical model of cellular therapy 335 

delivered via normothermic machine perfusion to kidney grafts demonstrated improved urine 336 
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output and reduced inflammatory injury52. In the future, pancreas and kidney grafts may 337 

simultaneously undergo ex situ perfusion for viability assessment and reconditioning prior to 338 

SPK transplantation. 339 

 340 

We acknowledge the following limitations. Missing data are inevitable in any retrospective 341 

study and could impact analyses, however we believe that data were missing at random and 342 

employed multiple imputation to address this. Variations in blood pressure, heart rate and 343 

oxygen saturations following withdrawal of life-sustaining treatment were also not available 344 

from our registry. Detailed analysis of changes in haemodynamic parameters following 345 

withdrawal of life-sustaining treatment may have provided additional granularity to our 346 

analyses, and allow for identification of patterns of decline and what association (if any) they 347 

may have with post-SPK transplant outcome. Implantation technique and immunosuppression 348 

protocols were determined by centres, and variation was not captured in our analyses. Finally, 349 

inherent to the retrospective nature of the study, an element of selection bias is likely to be 350 

present, and this may be reflected by the narrow IQR for TTD, asystolic time and FWIT. For 351 

obvious reasons, it would not be possible to explore post-transplant outcomes of grafts 352 

declined due to prolonged TTD, asystolic time or FWIT. However further prospective 353 

evaluation of agonal times and their impact on outcome in pancreas transplantation (both 354 

SPK and pancreas-alone), particularly of grafts declined by one centre but accepted and 355 

transplanted by another centre would be very informative on the decision-making process 356 

surrounding graft assessment.  357 

 358 

Our analyses had demonstrated that TTD did not impact recipient outcome following DCD 359 

SPK transplantation. FWIT and asystolic time were found to be significant predictors of 360 

outcome, with longer asystolic time associated with poorer graft survival at 5-years. Our data 361 
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confirms that procurement teams should therefore place no emphasis on the duration of TTD 362 

whilst FWIT has not been achieved.  363 
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Table 1 – Demographic variables in the donors and recipients. Continuous variables are presented as 1 
meansstandard deviation, categorical variables are presented as frequencies and percentages 2 

Variable Value Percentage 

Donor 

Age (years) 30.712.8  

Sex 

Male 

Female 

 

231 

144 

 

61.6% 

38.4% 

Cause of death 

Hypoxic brain injury 

Intracranial haemorrhage 

Trauma 

CVA 

Other cause 

 

176 

100 

46 

14 

39 

 

46.9% 

26.7% 

12.3% 

3.7% 

10.4% 

NRP 43 11.5% 

Recipient 

Age (years) 41.58.7  

Sex 

Male 

Female 

 

223 

152 

 

59.5% 

60.5% 

BMI (kg/m2) 25.23.6  

Diabetes 

Type 1 

Type 2 

Missing 

 

274 

14 

87 

 

73.1% 

3.7% 

23.2% 

Waiting time (days) 371.8289  

Dialysis 213 56.8% 

Pre-transplant HbA1c (%) 35.611.9  

First pancreas transplant 371 98.9% 

Duct management 

Enteric side to side 

Enteric Roux en Y 

Missing 

 

247 

78 

50 

 

65.9% 

20.8% 

13.3% 
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Table 2 – Donor procurement times 1 

Variable Median Interquartile 

range 

Range 

Cold ischaemic time (hours) 10 9-12 6-18 

Warm ischaemic time (minutes) 27 23-31 12-66 

Functional warm ischaemia time 

(minutes) 

21 17-25 9-58 

Asystolic time (minutes) 13 11-14 3-33 

Time to death (minutes) 13 10-16 0-407 

Donor pancreatectomy time 

(minutes) 

48.0 39-64 15-188 

 2 

 3 

Table 3 – Causes of pancreas graft failure in recipients 4 

Cause of graft failure Frequency Percentage 

Pancreatitis 7 16.7% 

Graft thrombosis 7 16.7% 

Anastomotic leak 5 11.9% 

Chronic rejection 3 7.1% 

Infection 2 4.8% 

Acute rejection 1 2.4% 

Primary non-function 1 2.4% 

Unknown/other 16 38.1% 

5 
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Table 4 – Multivariable Cox regression analysis of potential predictors of pancreas graft loss, 1 
modelling time to death. Pooled data from 5 imputed datasets.  2 

Variable Adjusted HR 95% CI P-value 

Time to death* 0.98 0.68-1.41 0.901 

Asystolic time* 2.51 1.16-5.43 0.020 

Pancreatectomy time* 0.98 0.49-1.97 0.947 

Cold ischaemic time 

(hours) 

0.93 0.80-1.08 0.354 

Donor age (years) 0.99 0.96-1.02 0.315 

Donor BMI (per unit) 1.17 1.07-1.27 <0.001 

Cause of death    

Hypoxic brain injury Ref - - 

CVA 1.07 0.47-2.41 0.880 

Trauma 0.90 0.35-2.30 0.825 

Other 0.90 0.30-2.72 0.847 

Year of transplant 0.79 0.65-0.95 0.012 

NRP 0.27 0.04-1.82 0.181 

Recipient age (years) 0.91 0.87-0.95 <0.001 

Diabetes    

Type 1 Ref - - 

Type 2 5.62 1.47-23.50 0.013 

*Time to death, asystolic time and pancreatectomy time were log-transformed prior to inclusion in 3 
this model, due to right-skew. Their effect estimates relate to a unit increase in log2(time period); i.e. 4 
the adjusted hazard ratio associated with a doubling of the respective time. 5 
 6 
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Table 5 – Multivariable cox regression analysis of potential predictors of pancreas graft loss, 1 
modelling functional warm ischaemia time. Pooled data from 5 imputed datasets.  2 

Variable Adjusted HR 95% CI P-value 

Functional warm ischaemia time* 2.21 1.06-4.61 0.035 

Pancreatectomy time* 0.97 0.46-2.04 0.930 

Cold ischaemia time (hours) 0.96 0.82-1.13 0.594 

Donor age (years) 0.98 0.95-1.01 0.236 

Donor BMI (units) 1.17 1.07-1.27 <0.001 

Cause of death    

Hypoxic brain injury Ref - - 

CVA 1.10 0.49-2.46 0.826 

Trauma 0.87 0.35-2.18 0.770 

Other 0.81 0.26-2.51 0.717 

Year of transplant 0.77 0.64-0.93 0.006 

NRP 0.30 0.04-2.34 0.249 

Recipient age (years) 0.91 0.87-0.94 <0.001 

Diabetes    

Type 1 Ref - - 

Type 2 3.54 1.07-11.74 0.039 

*Functional warm ischaemia time and pancreatectomy time were log-transformed prior to inclusion in 3 
this model, due to right-skew. Their effect estimates relate to a unit increase in log2(time period); i.e. 4 
the adjusted hazard ratio associated with a doubling of the respective time.5 Jo
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 1 

Figure 1 – Timeline of events following withdrawal of life-sustaining treatment in a donor after 2 
circulatory death 3 

 4 
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 1 
 2 

Figure 2 – Restricted cubic spline modelling adjusted hazard ratio of graft survival as a function of 3 
time to death 4 
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 1 
Figure 3 – Restricted cubic spline of adjusted hazard ratio of graft survival as a function of asystolic 2 
time3 
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 1 

Figure 4 – Kaplan-Meier curve of pancreas graft survival, comparing asystolic time ≤13-minutes with 2 
asystolic time >13-minutes 3 
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Supplementary table 1 – Summary of missing data 1 
 

Number missing  Percent missing (%) 

Donor age 0 0 

Donor BMI 0 0 

Donor cause of death 0 0 

Transplant year 0 0 

NRP 0 0 

Recipient age 0 0 

Diabetes type 87 23.2 

Time to death 77 20.5 

Asystolic time 101 26.9 

Pancreatectomy time 58 15.5 

Cold ischaemic time 25 6.7 

fWIT 108 28.8 
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Supplementary table 2 – Demographic variables in the donors and recipients presented by time to 1 
death category 2 

Variable Time to death ≤60 

minutes (IQR) 

Time to death >60 

minutes (IQR) 

P-value 

Donor 

Donor age (years) 30.512.8 38.08.8 0.035 

Sex 

Male 

Female 

 

226 (61.7%) 

140 (38.3%) 

 

5 (55.6%) 

4 (44.4%) 

 

0.976 

Cause of death 

Hypoxic brain injury 

Intracranial 

haemorrhage 

Trauma 

CVA 

Other cause 

 

173 (47.3%) 

98 (26.8%) 

 

45 (12.3%) 

14 (3.8%) 

36 (9.8%) 

 

3 (33.3%) 

2 (22.2%) 

 

 

1 (11.1%) 

0 

3 (33.3%) 

 

0.638 

NRP 42 (11.5%) 1 (11.1%) 1.00 

Recipient 

Age (years) 41.58.7 40.810.0 0.828 

Sex 

Male 

Female 

 

215 

151 

 

8 

1 

 

0.090 

BMI (kg/m2) 25.33.6 22.94.0 0.264 

Waiting time (days) 373291 332168 0.503 

Pre-transplant 

HbA1C (%) 

35.512.0 36.69.4 0.785 

 3 
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 1 

 2 

Supplementary figure 1 – missing values map to show pattern of missing data. Participants span the x 3 
axis and light blue represents missing data.4 
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 1 

2 
A 3 

 4 

5 
B 6 

Supplementary figure 2 – Kaplan-Meier graph of A) pancreas graft survival and B) patient survival, 7 
comparing time to death ≤30 minutes, time to death 30-60 minutes and time to death >60 minutes. 8 

Jo
urn

al 
Pre-

pro
of



 32 

 1 

Supplementary figure 3 – Distribition of time to death (minutes) across the anonymised eight UK 2 
pancreas transplant units. All points above the dashed line represent grafts with a donor time to death 3 
exceeding 60 minutes. 4 

 5 

 6 

 7 

 8 
 9 
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 1 

 2 

Supplementary figure 4 – Kaplan-Meier graph of kidney graft survival, comparing asystolic time 3 
<13-minutes with asystolic time ≥13-minutes 4 
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