476 research outputs found
Totalled: Salvaging the Future from the Wreckage of Capitalism
Review of Colin Cremin, Totalled.
 
Crop price indemnified loans for farmers
Farmers face a particular set of risks that complicate the decision to borrow. We use a randomized experiment to investigate (1) the role of crop-price risk in reducing demand for credit among famers and (2) how risk mitigation changes farmers’ investment decisions. In rural Ghana, we offer farmers loans with an indemnity component that forgives 50 percent of the loan if crop prices drop below a threshold price. A control group is offered a standard loan product at the same interest rate. We find similar rates of loan uptake among all farmers and little significant impact of the indemnity component on uptake or other outcomes of interest, with the exception of higher likelihoods of garden egg cultivation and sales to market traders rather than at farmgate among recipients of indemnified loans.agricultural credit, clustered randomized control trial, crop price insurance, crop prices, Impact evaluation, underinvestment,
Evolution: Mimicry meets the mitochondrion
AbstractA recent molecular study of the evolution of mimicry in tropical butterflies of the genus Heliconius proves that the mimics adapted to previously diverged ‘model’ species, but does not clearly distinguish between opposing views of how the model species diverged
Concepts and embodiment design of a reentry recumbent seating system for the NASA Space Shuttle
This report deals with the generation of a recumbent seating system which will be used by NASA to shuttle astronauts from the Russian space station Mir. We begin by examining the necessity for designing a special couch for the returning astronauts. Next, we discuss the operating conditions and constraints of the recumbent seating system and provide a detailed function structure. After working through the conceptual design process, we came up with ten alternative designs which are presented in the appendices. These designs were evaluated and weighted to systematically determine the best choice for embodiment design. A detailed discussion of all components of the selected system follows with design calculations for the seat presented in the appendices. The report concludes with an evaluation of the resulting design and recommendations for further development
Mechanically switchable polymer fibers for sensing in biological conditions
The area of in vivo sensing using optical fibers commonly uses materials such as silica and polymethyl methacrylate, both of which possess much higher modulus than human tissue. The mechanical mismatch between materials and living tissue has been seen to cause higher levels of glial encapsulation, scarring, and inflammation, leading to failure of the implanted medical device. We present the use of a fiber made from polyvinyl alcohol (PVA) for use as an implantable sensor as it is an easy to work with functionalized polymer that undergoes a transition from rigid to soft when introduced to water. This ability to switch from stiff to soft reduces the severity of the immune response. The fabricated PVA fibers labeled with fluorescein for sensing applications showed excellent response to various stimuli while exhibiting mechanical switchability. For the dry fibers, a tensile storage modulus of 4700 MPa was measured, which fell sharply to 145 MPa upon wetting. The fibers showed excellent response to changing pH levels, producing values that were detectable in a range consistent with those seen in the literature and in proposed applications. The results show that these mechanically switchable fibers are a viable option for future sensing applications
Recommended from our members
Conservation and flexibility in the gene regulatory landscape of heliconiine butterfly wings
Funder: Wellcome Trust; doi: http://dx.doi.org/10.13039/100004440Abstract: Background: Many traits evolve by cis-regulatory modification, by which changes to noncoding sequences affect the binding affinity for available transcription factors and thus modify the expression profile of genes. Multiple examples of cis-regulatory evolution have been described at pattern switch genes responsible for butterfly wing pattern polymorphism, including in the diverse neotropical genus Heliconius, but the identities of the factors that can regulate these switch genes have not been identified. Results: We investigated the spatial transcriptomic landscape across the wings of three closely related butterfly species, two of which have a convergently evolved co-mimetic pattern and the other having a divergent pattern. We identified candidate factors for regulating the expression of wing patterning genes, including transcription factors with a conserved expression profile in all three species, and others, including both transcription factors and Wnt pathway genes, with markedly different profiles in each of the three species. We verified the conserved expression profile of the transcription factor homothorax by immunofluorescence and showed that its expression profile strongly correlates with that of the selector gene optix in butterflies with the Amazonian forewing pattern element ‘dennis.’ Conclusion: Here we show that, in addition to factors with conserved expression profiles like homothorax, there are also a variety of transcription factors and signaling pathway components that appear to vary in their expression profiles between closely related butterfly species, highlighting the importance of genome-wide regulatory evolution between species
The appearance of mimetic Heliconius butterflies to predators and conspecifics.
Adaptive coloration is under conflicting selection pressures: choosing potential mates and warning signaling against visually guided predators. Different elements of the color signal may therefore be tuned by evolution for different functions. We investigated how mimicry in four pairs of Heliconius comimics is potentially seen both from the perspective of butterflies and birds. Visual sensitivities of eight candidate avian predators were predicted through genetic analysis of their opsin genes. Using digital image color analysis, combined with bird and butterfly visual system models, we explored how predators and conspecifics may visualize mimetic patterns. Ultraviolet vision (UVS) birds are able to discriminate between the yellow and white colors of comimics better than violet vision (VS) birds. For Heliconius vision, males and females differ in their ability to discriminate comimics. Female vision and red filtering pigments have a significant effect on the perception of the yellow forewing band and the red ventral forewing pattern. A behavioral experiment showed that UV cues are used in mating behavior; removal of such cues was associated with an increased tendency to approach comimics as compared to conspecifics. We have therefore shown that visual signals can act to both reduce the cost of confusion in courtship and maintain the advantages of mimicry.ERC, CAPES, STR
A nonlinear approach to transition in subcritical plasmas with sheared flow
In many plasma systems, introducing a small background shear flow is enough
to stabilize the system linearly. The nonlinear dynamics are much less
sensitive to sheared flows than the average linear growthrates, and very small
amplitude perturbations can lead to sustained turbulence. We explore the
general problem of characterizing how and when the transition from near-laminar
states to sustained turbulence occurs; a model of the interchange instability
being used as a concrete example. These questions are fundamentally nonlinear,
and the answers must go beyond the linear transient amplification of small
perturbations. Two methods that account for nonlinear interactions are
therefore explored here. The first method explored is edge tracking, which
identifies the boundary between the basins of attraction of the laminar and
turbulent states. Here, the edge is found to be structured around an exact,
localized, traveling wave solution; a solution that is qualitatively similar to
avalanche-like bursts seen in the turbulent regime. The second method is an
application of nonlinear, non-modal stability theory which allows us to
identify the smallest disturbances which can trigger turbulence (the minimal
seed for the problem) and hence to quantify how stable the laminar regime is.
The results obtained from these fully nonlinear methods provides confidence in
the derivation of a semi-analytic approximation for the minimal seed
Polyphyly and gene flow between non-sibling Heliconius species
BACKGROUND: The view that gene flow between related animal species is rare and evolutionarily unimportant largely antedates sensitive molecular techniques. Here we use DNA sequencing to investigate a pair of morphologically and ecologically divergent, non-sibling butterfly species, Heliconius cydno and H. melpomene (Lepidoptera: Nymphalidae), whose distributions overlap in Central and Northwestern South America. RESULTS: In these taxa, we sequenced 30–45 haplotypes per locus of a mitochondrial region containing the genes for cytochrome oxidase subunits I and II (CoI/CoII), and intron-spanning fragments of three unlinked nuclear loci: triose-phosphate isomerase (Tpi), mannose-6-phosphate isomerase (Mpi) and cubitus interruptus (Ci) genes. A fifth gene, dopa decarboxylase (Ddc) produced sequence data likely to be from different duplicate loci in some of the taxa, and so was excluded. Mitochondrial and Tpi genealogies are consistent with reciprocal monophyly, whereas sympatric populations of the species in Panama share identical or similar Mpi and Ci haplotypes, giving rise to genealogical polyphyly at the species level despite evidence for rapid sequence divergence at these genes between geographic races of H. melpomene. CONCLUSION: Recent transfer of Mpi haplotypes between species is strongly supported, but there is no evidence for introgression at the other three loci. Our results demonstrate that the boundaries between animal species can remain selectively porous to gene flow long after speciation, and that introgression, even between non-sibling species, can be an important factor in animal evolution. Interspecific gene flow is demonstrated here for the first time in Heliconius and may provide a route for the transfer of switch-gene adaptations for Müllerian mimicry. The results also forcefully demonstrate how reliance on a single locus may give an erroneous picture of the overall genealogical history of speciation and gene flow
Phenotypic plasticity in chemical defence of butterflies allows usage of diverse host plants.
Host plant specialization is a major force driving ecological niche partitioning and diversification in insect herbivores. The cyanogenic defences of Passiflora plants keep most herbivores at bay, but not the larvae of Heliconius butterflies, which can both sequester and biosynthesize cyanogenic compounds. Here, we demonstrate that both Heliconius cydno chioneus and H. melpomene rosina have remarkable plasticity in their chemical defences. When feeding on Passiflora species with cyanogenic compounds that they can readily sequester, both species downregulate the biosynthesis of these compounds. By contrast, when fed on Passiflora plants that do not contain cyanogenic glucosides that can be sequestered, both species increase biosynthesis. This biochemical plasticity comes at a fitness cost for the more specialist H. m. rosina, as adult size and weight for this species negatively correlate with biosynthesis levels, but not for the more generalist H. c. chioneus. By contrast, H. m rosina has increased performance when sequestration is possible on its specialized host plant. In summary, phenotypic plasticity in biochemical responses to different host plants offers these butterflies the ability to widen their range of potential hosts within the Passiflora genus, while maintaining their chemical defences.UKRI, BBSRC: BB/R007500/1
Horizon 2020 - Marie Curie Actions, grant number: 841230 (Acronym: CyanideEvolution)
European Research Council, grant number: 339873 (Acronym: SpeciationGenetics)
Danmarks Frie Forskningsfond - FNU: 1323-0008
- …