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Abstract 

Hostplant specialization is a major force driving ecological niche partitioning and diversification in 

insect herbivores. The cyanogenic defences of Passiflora plants keep most herbivores at bay, but not 

the larvae of Heliconius butterflies, which can both sequester and biosynthesize cyanogenic 

compounds. Here, we demonstrate that both Heliconius cydno chioneus and H. melpomene rosina 

have remarkable plasticity in their chemical defence. When feeding on Passiflora species with 

cyanogenic compounds that they can readily sequester, both species downregulate the biosynthesis 

of these compounds.  In contrast, when fed on Passiflora plants that do not contain cyanogenic 

glucosides that can be sequestered, both species increase biosynthesis. This biochemical plasticity 

comes at a fitness cost for the more specialist H. m. rosina, as adult size and weight for this species 

negatively correlate with biosynthesis levels, but not for the more generalist H. c. chioneus. In contrast, 

H. m rosina has increased performance when sequestration is possible on its specialised hostplant. In 

summary, phenotypic plasticity in biochemical responses to different host plants offers these 

butterflies the ability to widen their range of potential hosts within the Passiflora genus, while 

maintaining their chemical defences. 
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1 INTRODUCTION

2 Hostplant specialization is undoubtedly one of the most important forces driving diversification and 

3 shaping niche dimension for phytophagous insects [5][6][7]. Most specialized insects have not only 

4 evolved  the ability to handle the chemical defences of their favourite hosts and grow despite them, 

5 but have often become dependent on these compounds [8].Hence, the majority of toxic insects rely 

6 on plant compounds to protect them against predators and pathogens[14]. Sequestration of plant 

7 toxins is an adaptation that arose in several insect orders, most notably Coleoptera and Lepidoptera, 

8 playing an important role in the antagonistic coevolution with their hosts[15][16]. However, whereas 

9 inducible defences of plants by herbivory have been well studied [9][10][11][12], there has been 

10 relatively limited exploration of the mechanisms of biochemical plasticity in insects that could allow 

11 them to exploit diverse hosts [13]

12 Although sequestration considerably increases fitness of specialized insect herbivores on their 

13 preferred diet, it has subordinated their toxicity and niche breadth to specific plant taxa.  Arguably, 

14 the escalation of diet specialization could lead to an evolutionary and ecological “dead end” [17][18]. 

15 Phenotypic plasticity is widely recognised as an adaptation that allows organisms to survive in a 

16 variable environment [1]. Furthermore, plasticity in the origin of chemical defences might permit 

17 populations to colonize otherwise inaccessible niches or habitats, providing new targets for 

18 evolutionary process [2][3][4].  In contrast to most aposematic insects, Heliconius butterflies have 

19 both diet-acquired (sequestered) and autogenous (biosynthesized) chemical defences, which makes 

20 them a suitable system to explore the correlation between biochemical plasticity and diet 

21 specialization.

22 Heliconius biosynthesize aliphatic cyanogenic glucosides (CNglcs) from the amino acids valine and 

23 isoleucine [19]. Their obligatory Passiflora hosts are also chemically defended by a broad range of 

24 CNglcs [20], several of which are sequestered by Heliconius during larval feeding [21][22][23] (Table 

25 S1). It has been suggested that Heliconius species specialized for sequestration show reduced 

26 biosynthesis [23][24]. However, it remains unknown whether there is within-species plasticity in the 

27 use of sequestered versus autogenous toxicity, as this is a poorly understood phenomenon in 

28 aposematic insects. Switching between biosynthesis and sequestration of toxins could allow insects 

29 to colonise a wider array of potential host plants independently of sequestration, while also 

30 maintaining their chemical defences. 

31 Here, we explore the trade-off between biosynthesis and sequestration of toxins within two Heliconius 

32 species with different host-use strategies to answer the following questions: 1) Is there plasticity in 

33 the adoption of biosynthesis and sequestration on different host plants? 2) Does biochemical plasticity 
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34 have a fitness cost? 3) Is this cost similar for insects with generalist and specialist hostplant 

35 preferences? To answer these questions, we raised the sympatric butterflies Heliconius melpomene 

36 rosina and Heliconius cydno chioneus on four Passiflora species with varied CNglc profiles (Table S1). 

37 It has been reported that although their larvae perform well on several hosts, H. m. rosina has strong 

38 oviposition preferences for P. menispermifolia, whereas H. c. chioneus oviposits on many Passiflora 

39 plants [25]. Here, we measured size, weight and CNglc content of adults raised on different larval diets 

40 to investigate whether there were possible fitness trade-offs when feeding on different plants or 

41 adopting different chemical defence strategies. 

42 METHODS

43 Butterfly rearing

44 Butterflies were reared at the Smithsonian Tropical Research Institute, Panama. Stocks of H. cydno 

45 chioneus and H. melpomene rosina were maintained in cages and fed ad libidum with flowers (Psiguria 

46 triphylla, Gurania eriantha, Psychotria poeppigiana, Lantana sp.) and artificial nectar (10% sugar 

47 solution). Plants of one of the four species used in the experiment - P. biflora, P. menispermifolia, P. 

48 platyloba, and P. vitifolia - were always kept in cages for oviposition. Eggs were collected daily and 

49 kept in closed tubs until hatching. On the morning of hatching, larvae were transferred to treatment-

50 specific cages onto individual shoots. Cages were checked daily and fresh sterilized shoots provided 

51 regularly. Pupae were immediately removed, weighed the day after pupation and taped inside 

52 individual 350 ml tubes. Butterfly measurements were acquired few hours after eclosion. Body length 

53 was measured from the end of the head to the end of the abdomen and forewing length was measured 

54 from the central base to the most distal point. Butterflies were added into tubes containing 1.5 mL 

55 methanol 80% (v/v) and stored at 4 °C.  

56 Chemical Analyses 

57 Samples were homogenized in 1.5 mL methanol 80% (v/v) where they were soaked and centrifuged 

58 at 10,000 x g for 5 min. Supernatants were collected and kept in HPLC vials at -20 °C. Sample aliquots 

59 were filtered (Anapore 0.45 µm, Whatman), diluted 50X times (v/v) and injected into an Agilent 1100 

60 Series LC (Agilent Technologies, Germany) hyphenated to a Bruker HCT-Ultra ion trap mass 

61 spectrometer (Bruker Daltonics). Chromatographic separation was carried out using a Zorbax SB-C18 

62 column (Agilent; 1.8μM, 2.1x50mm). MS and LC conditions are described in [23]. Sodium adducts of 

63 CNglcs detected in the butterflies were identified by comparing their m/z fragmentation patterns and 

64 RTs to authentic standards [20] and quantified as described in [23]. 

65 Statistical Analyses
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66 Statistical analyses were performed using R version 3.5.1 (R Core Team, 2017). ANOVA followed by 

67 Tukey HSD was used to analyse the effects of each diet on the measured traits within species. ANCOVA 

68 and linear regressions were used to verify if biosynthesis have similar fitness cots for butterflies with 

69 generalist and specialist hostplant preferences (See details in Supplementary Material). 

70 RESULTS

71 Larval diet affected the CNglc profile of both H. melpomene and H. cydno butterflies (Figure 1). Both 

72 species sequestered deidaclin when fed on P. menispermifolia, although H. melpomene sequestered 

73 significantly more deidaclin than H. cydno (ANOVA, F1,22= 8.851; p= 0.00699). In both species, 

74 Deidaclin sequestration from P. menispermifolia was associated with a reduction of biosynthesis in 

75 comparison with other diets. The modified CNglc passibiflorin from P. biflora and tetraphyllin B-

76 sulphate from P. vitifolia were not found in either butterfly species raised on these diets, suggesting 

77 that they cannot sequester these compounds. Surprisingly, traces of prunasin recently found in the 

78 haemolymph of larvae raised on P. platyloba [22] were not present in adults of either butterfly 

79 species. 

80
81 Figure 1. CNglc composition of H. cydno (left, N= 39) and H. melpomene (right, N= 55) raised on 
82 different Passiflora diet. men= P. menispermifolia; pla= P. platyloba; vit= P. vitifolia; bif= P. biflora 
83 (non-host). Green boxplots correspond to the biosynthesized CNglcs linamarin and lotaustralin found 
84 in all butterflies. Letters over boxplots correspond to post-hoc comparisons within butterfly species, 
85 where different letters indicate statistically significant concentration of biosynthesized CNglcs. Salmon 
86 boxplots to the sequestered CNglc deidaclin only detected in butterflies raised on P. menispermifolia. 
87 Tetraphyllin B-sulphate, passibiflorinand prunasin were not detected in butterflies, even though they 
88 were present in the food plants P. vitifolia, P. biflora and P. platyloba, respectively (Table S1). 
89
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90 Larval diet not only influenced the composition, but also the total CNglc concentration in both species 

91 (ANOVA, H. cydno: F3,39 = 3.653, p= 0.0205; H. melpomene: F3,55= 8.776, p= 0.00007) (Figure 2A). Both 

92 had less CNglcs when reared on P. biflora, which they normally do not use as a host. On average, 

93 butterflies also had a higher CNglcs content when reared on P. menispermifolia than on P. platyloba 

94 and P. vitifolia, though these differences were not statistically significant. CNglc concentrations in H. 

95 cydno (3.85 ± 1.08) were on average lower than H. melpomene (5.96 ± 1.97).

96 Larval diet also affected size and weight of both species. Forewing size of H. cydno (ANOVA, F3,39= 5.14; 

97 p= 0.004) was larger and more strongly influenced by larval diet than H. melpomene (F3,57= 4.0; p= 

98 0.012) (Figure 2B). H. cydno had larger forewings when fed on P. vitifolia and P. biflora, and smaller 

99 on P. menispermifolia and P. platyloba. In contrast, adults of H. melpomene had larger forewings when 

100 reared on P. menispermifolia and P. biflora, and smaller on P. vitifolia and P. platyloba. Broadly similar 

101 effects of diet were seen for butterfly weight (Figure 2C), although this was not significant for H. 

102 melpomene. These trends were also similar in other size and weight measurements (Figure S1). Sex 

103 differences in forewing size, butterfly weight and total CNglcs concentration were not observed in 

104 either species (Table S3). 

105 In order to verify whether biosynthesis versus sequestration plasticity has fitness costs for both 

106 species, we performed an ANCOVA analysing the effect of biosynthesized CNglcs and diet on the 

107 fitness proxies, size and weight. In the generalist H. cydno, even though larval diet strongly affects 

108 forewing size (F3,35= 3.7514 p= 0.0195) and butterfly weight (F3,35 = 16.222 p= 0.000001), this effect is 

109 not correlated with whether they sequester or biosynthesize CNglcs (forewing size: F1,35=3.1465 p= 

110 0.0848; butterfly weight: F1,35= 0.044 p = 0.8351) (Figure 2D and 2E). Thus, although larval diet has a 

111 profound effect on H. cydno fitness, this is not caused by the CNglc composition of the plants but by 

112 their other nutritional properties. Whilst, in the ecological specialist H. melpomene, there is a negative 

113 effect of CNglc biosynthesis on forewing size (F1,51= 9.1370, p= 0.0039)(Figure 2D) and butterfly weight 

114 (F1,51= 11.8676, p= 0.0011)(Figure 2E), and the effect of diet is not significant in this correlation 

115 (forewing size: F3,51= 1.1321, p= 0.3449; butterfly weight: F3,51= 0.5701, p= 0.6372). This suggests that 

116 despite their successful performance on many Passiflora diets, CNglc biosynthesis has a fitness cost 

117 for H. melpomene rosina, which mostly lay eggs on P. menispermifolia from which they can sequester 

118 CNglcs. 

119
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120
121 Figure 2. Effect of larval diet on A) total CNglc concentration; B) forewing length and C) butterfly 
122 weight of H. cydno (left, N= 39) and H. melpomene (right, N= 55). Letters over boxplots correspond to 
123 post-hoc comparisons within butterfly species, where different letters indicate statistically significant 
124 treatments. Correlation between concentration of biosynthesized CNglcs (accounting for diet) D) and 
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125 forewing length; E) and butterfly weight. pla= men= P. menispermifolia; P. platyloba; vit= P. vitifolia; 
126 bif= P. biflora (non-host).
127

128 DISCUSSION

129 We documented, for the first time, intra-specific plasticity in the CNglc profile of both H. melpomene 

130 rosina and H. cydno chioneus in response to larval diet (Figure 1). When reared on a plant with 

131 cyclopentenyl CNglcs that can be sequestered, both species invest less in biosynthesis of aliphatic 

132 CNglcs, a trade-off that has previously been observed between different species[26][23].  This 

133 plasticity should enable Heliconius to exploit different Passiflora hosts – independently of plant CNglc 

134 composition – as they can maintain their defences through biosynthesis when sequestration is not 

135 possible. Interestingly, many Passiflora species seem to have modified their CNglcs to prevent 

136 sequestration by heliconiines [23]. Here, we show that the two modified CNglcs passibiflorin and 

137 tetraphyllin-B sulphate were not sequestered by either Heliconius species, suggesting an evolutionary 

138 arms-race between the plants and their herbivores. For both Heliconius species, individuals raised on 

139 their natural host range reached a similar total concentration of CNglcs regardless of how they 

140 acquired their cyanogenic defencesA similar pattern has been observed in the moth Zygaena 

141 filipendulae, another rare example of lepidopteran that can both de novo biosynthesize and sequester 

142 the same defence metabolites [27]. Z. filipendulae balance their cyanogenic content with biosynthesis 

143 when sequestration is not possible, however at the detriment of growth [28][29]. It is likely that, as in 

144 Zygaena moths, Heliconius have adaptations to optimize the energetic cost of their toxicity: 

145 decreasing biosynthesis of CNglcs when these compounds are available for sequestration and 

146 increasing it when they are not.

147 Balancing biosynthesis and sequestration in response to diet is not exclusive to Lepidoptera. For 

148 example: Chrysomela lapponica larvae (Coleoptera) increase 40 fold synthesis of defensive esters 

149 when effective sequestration of salicylic glycoside is not possible [30]. When raised on milkweed,  

150 Lygaeus equestris (Heteroptera) sequester cardenolides and reduce biosynthesis of volatile defences 

151 in their scent-gland in comparison to bugs fed sunflower seeds (no cardenolides)[31]. Even though in 

152 these examples autogenous and sequestered defence compounds belong to completely divergent 

153 chemical classes and are likely under different selection forces, there is still a trade-off between 

154 biosynthesis and sequestration. This emphasizes the complexity of biochemical plasticity in insects in 

155 response to diet and suggest that this process may be of greater importance than currently realized.

156 Biochemical plasticity could be advantageous if, for example, hostplants are very heterogenous in 

157 chemical content or of it enables insects to use a broader range of hostplants. Avoidance of 

158 interspecific competition is possibly the major force shaping the evolution of hostplant range for 
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159 Heliconius in Panama, where coexisting species rarely share oviposition preference for the same 

160 Passiflora[34][35]. Biochemical plasticity could therefore be associated with a wide range among of 

161 Passiflora hosts, allowing the coexistence of multiple Heliconius species and enable them to further 

162 diversify and/or switch their use of Passiflora species while maintaining their chemical defences.  

163 Nevertheless, the cost of biosynthesis versus sequestration and diet plasticity seems to vary between 

164 Heliconius species

165 In Heliconius, recent studies have also shown that some monophagous species  have become more 

166 efficient in sequestration and might have lost their biosynthetic ability [22][37]. Here, we show that 

167 although the ability to shift between chemical strategy is present in two closely related species, the 

168 cost of doing so differs. Although larval diet has a stronger effect on the performance of the more 

169 generalist H. cydno, fitness costs of biosynthesis per se was only observed for the more specialist H. 

170 melpomene (Figure 2D and 2E). Hence, although the phenotypic expression is plastic and varies with 

171 hostplant diet, it does so within a constrained range that is likely genetically defined. A new study has 

172 demonstrated that there is substantial intraspecific variation in the ability of these butterflies to 

173 biosynthesize CNglcs and suggested a genetic component to this variation [37]. Together with our 

174 results, this suggest that genetics and phenotypic plasticity play an important role in how aposematic 

175 herbivores balance autogenous versus acquired defences, the evolution of diet breadth, and in the 

176 coevolution with their hosts plants. 

177 It has been suggested that plasticity might facilitate the invasion of new habitats and therefore 

178 evolutionary innovation [4][36] .  It seems likely that biochemical plasticity originally evolved in species 

179 such as H. cydno as an adaptation to facilitate a wide host plant range, but might also enable Heliconius 

180 to further diversify and/or switch their use of Passiflora species while maintaining their chemical 

181 defences. Plasticity can therefore be seen as both a potential cause and a consequence of hostplant 

182 use diversification, but it is difficult to tease apart these two factors in this particular case.

183 For many decades, specialized insects were thought to have a simple biochemical machinery, 

184 sequestering from plants and becoming subordinated to them. This has contributed to the hypothesis 

185 that diet specialization would often led to an evolutionary and ecological “dead end”. With the 

186 advances of analytical chemistry and metabolomic approaches, we are now seeing that many insects 

187 can biosynthesize specialized metabolites [30][31], modify plant-acquired compounds[39] and even 

188 recycle them[29]. Our findings highlight that biochemical plasticity is not only possible, it may be more 

189 prevalent than currently assumed, and it may have far reaching consequences for diet breadth, 

190 ecological niche partitioning and speciation. 
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Figure 1. CNglc composition of H. cydno (left, N= 39) and H. melpomene (right, N= 55) raised on different 
Passiflora diet. men= P. menispermifolia; pla= P. platyloba; vit= P. vitifolia; bif= P. biflora (non-host). 

Green boxplots correspond to the biosynthesized CNglcs linamarin and lotaustralin found in all butterflies. 
Letters over boxplots correspond to post-hoc comparisons within butterfly species, where different letters 

indicate statistically significant concentration of biosynthesized CNglcs. Salmon boxplots to the sequestered 
CNglc deidaclin only detected in butterflies raised on P. menispermifolia. Tetraphyllin B-sulphate, 

passibiflorinand prunasin were not detected in butterflies, even though they were present in the food plants 
P. vitifolia, P. biflora and P. platyloba, respectively (Table S1). 
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Figure 2. Effect of larval diet on A) total CNglc concentration; B) forewing length and C) butterfly weight of 
H. cydno (left, N= 39) and H. melpomene (right, N= 55). Letters over boxplots correspond to post-hoc 
comparisons within butterfly species, where different letters indicate statistically significant treatments. 

Correlation between concentration of biosynthesized CNglcs (accounting for diet) D) and forewing length; E) 
and butterfly weight. pla= men= P. menispermifolia; P. platyloba; vit= P. vitifolia; bif= P. biflora (non-host). 
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